4MOST – 4m Multi-Object Spectroscopic Telescope

4MOST Spectroscopic Surveys & Asteroseismology Roelof de Jong (AIP) 4MOST PI

Reconstructing the Milky Way's History, 1–5 June 2015, Bad Honnef

www.4MOST.eu

4MOST: Wide-field, high-multiplex optical spectroscopic survey facility for ESO

- Status:
 - Preliminary Design Phase started Jan 2015
 - ESO Council approval expected June 2015
 - Operations start on VISTA telescope 2021 (at least 2x 5 year)
- Science:
 - Cosmology, galaxy evolution, high-energy and Galactic science
 - Complement large-area space missions: Gaia, eROSITA, Euclid, PLATO
 - Complement ground-based surveys: VISTA, VST, DES, LSST, SKA, etc.
- Survey facility:
 - Instrument, science operations, data products, science
 - Run all-sky 5 year public surveys in parallel, with yearly data releases
 - Key surveys organized by consortium in coordination with community
 - Add-on surveys from community through ESO peer-reviewed applications

Main science drivers A 5 year 4MOST survey provides

Cosmology and galaxy evolution **Euclid** VST/VISTA/LSST/SKA (+other all-sky surveys)

High-energy sky eROSITA

Gaia

Main science drivers A 5 year 4MOST survey provides

- Euclid/LSST/SKA (and other surveys) complement:
 - Dark Energy & Dark Matter (BAO, RSD, lensing, Lyα forest)
 - Galaxy evolution (groups & clusters)
 - Transients (SNe Ia, GRB)
 - >13 ×10⁶ spectra of m_V~20-22.5 mag LRGs & ELGs
- **eROSITA** complement:
 - Cosmology with x-ray clusters to z~0.8
 - X-ray AGN/galaxy evolution and cosmology to z~5
 - Galactic X-ray sources, resolving the Galactic edge
 - 2×10^6 spectra of AGN and galaxies in 50,000 clusters
- Gaia complement:
 - Chemo-dynamics of the Milky Way
 - Stellar radial velocities, parameters and abundances
 - 13×10^6 spectra @ R~5000 of m_V~15-20 mag stars
 - 2×10^6 spectra @ R~20,000 of m_V~14-16 mag stars

+ ~15 million spectra for community proposals

4MOST is a general purpose spectroscopic survey facility serving many astrophysical communities

Science Requirements

- 4MOST shall be able to obtain:
 - Redshifts of AGN and galaxies (also in clusters)
 - R~5000 spectra of 22 r-mag targets with S/N=5/Å with >3 targets in ø=2'
 - <u>Radial velocities</u> of ≤2 km/s accuracy and
 <u>Stellar parameters</u> of <0.15 dex accuracy of any Gaia star
 - R~5000 spectra of 20 r-mag stars with S/N=10 per Ångström
 - Abundances of up to 15 chemical elements
 - R~20000 spectra of 16 V-mag stars with S/N=140 per Ångström
- In a 5 year survey 4MOST shall obtain:
 - 15 (goal 30) million targets at R~5000
 - 1.0 (goal 3.0) million targets at R~20,000
 - 16,000 (goal 23,000) degree² area on the sky at least two times

4MOST instrument overview

Low-Resolution Spectrographs

- New Wide-field Corrector, fibre positioner and three spectrographs
- Spectrographs mounted on telescope fork (gravitation invariant)
- Short fibre run (~15 m), prototype shows very low FRD

Wide-Field Corrector

VISTA telescope

High-Res Spectrograph

Instrument Specification

Specification	Design value
Field-of-View (hexagon)	~4.1 degree ² (Ø>2.5°)
Multiplex fiber positioner	~2400
Medium Resolution Spectrographs (2x) # Fibres Passband Velocity accuracy	R~5000-7000 1600 fibres 390-930 nm < 2 km/s
High Resolution Spectrograph (1x) # Fibres Passband Velocity accuracy	R~20,000 800 fibres 392-437 & 515-572 & 605-675 nm < 1 km/s
# of fibers in Ø=2' circle	>3
Fibre diameter	Ø=1.4 arcsec
Area (first 5 year survey)	>2h x 18,000 deg ²
Number of science spectra (5 year)	~75 million of 20 min

Wide-field corrector VISTA $\emptyset = 2.5^{\circ}$ includes an ADC, A&G, and WFS

Development AIP responsibility

1000nm

Field-edge position Zenith Distance: 55 degree Seeing: 0.7 arcsec Fibre: 1.5 arcsec

380 nm

Tilting Spine (Echidna) positioner

- ~2400 fibres
 - Large, overlapping patrol areas enables dense target packing and special high-resolution fibres
- Closest separation ~15 arcsec
- Reconfiguration time <2 min during science CCD readout

ad Hon

FMOS Echidna on Subaru

Dedicated HR and LR spectrographs

- Fixed configuration spectrographs, high throughput with VPH gratings
- 3-arm designs with 6k x 6k detectors for both high- and low-resolution

LR: CRAL, Lyon

How are we going to run 4MOST?

- Unique operations model for MOS instruments that allows observations for most science cases
- 4MOST program defined by *Public Surveys* of 5 years
- Surveys will be defined by *Consortium* and *Community*
- All Surveys will run *in parallel*Surveys share fibres per exposure for increased efficiency
- Key Surveys will define observing strategy

 Millions of targets all sky
- Add-on Surveys for smaller surveys
 - Small fraction fibers all sky
 - Dedicated small area
 - 10³ to 10⁶ targets

How are we going to run 4MOST?

- Consortium Surveys will ensure whole hemisphere covered with at least ~120 minutes total exposure time
- Each exposure 20 minutes, repeats possible
- Total exposures times per target between 20 and 120 min (and more) possible till required S/N
- Areas with more targets get visited for more than 120 min
- All decided at least ~2 days in advance. Current ESO operations models does not allow ToOs for 4MOST

Science verification with full 4MOST simulator: Design Reference Surveys

Surveys implemented with ~60M objects (coordination Feltzing & McMahon)

- Milky Way halo R>5000 (~3M objects) Helmi, Irwin
 - Chemo-dynamics streams
- Milky Way halo R>20,000 (~ 0.2M objects) Christlieb
 - Chemical evolution of accreted components
- Milky Way disks/bulge R>5000 (~25M objects) Chiappini, Minchev, Starkenburg
 - Chemo-dynamics of bulge/disks
- Milky Way disks/bulge R>20,000 (~2.5M objects) Bergemann, Bensby
 - Chemical evolution in situ components
- eROSITA galaxy clusters (~50,000 clusters, ~2.5M objects) Merloni (acting)
 - Dark Energy and galaxy evolutions
- eROSITA AGN (~1M objects) Merloni
 - Evolution of AGN and the connection to their host galaxies
- Galaxy evolution WAVES (~1.5M objects) Driver, Liske
 - Dense magnitude/redshift limited galaxy survey
- Fundamental cosmology science (~23M objects) Kitaura
 - Luminous red, blue galaxies, and AGN survey

Simulate throughput, fibre assice ont, survey strategy and verify total survey

Hammer-Aitoff Projectio

	Science case	S/N / Å	r _{AB} -mags	Targets (Millions)
·	MW halo HR	140	12–15.5	0.07
	MW halo LR	10	16–20.0	1.5
	MW disk/bulge HR	140	14–15.5	2.1
	MW disk/bulge LR	10–30	14–18.5	10.7
	X-ray galaxy clusters	4	18–22.0	1.4
00	X-ray AGN	4	18–22.0	0.7
	BAO+RSD galaxies	4	20–22.5	12.8
-5 J	Total			>29

Cosmology surveys (~15M objects)

- *Dark Energy* and *General Relativity* constraints by measuring cosmic expansion history and growth of structure:
 - Weak Lensing: Photo-z calibrations and characterize the foreground lensing populations for KIDS, DES, LSST and Euclid. Same sky cross-correlation of foreground density field & lensing improves constraints 2–4x
 - Galaxy Clusters: Redshifts and velocity dispersions of Galaxy Clusters provides strong constraints on growth rate of structure.
 - SNe Ia: Follow-up DES Sne Ia host galaxies and later LSST transients to measure expansion. 10s of LSST transients per pointing -> 100k transients/year
 - BAO and RSD: Use different populations (LRGs, ELGs, AGN, Lα forest) and their cross-correlation to measure expansion and structure growth
- Concentrate on redshifts z<~1 to complement Euclid, maximize area to increase number of targets for 4m telescope

Constraints on Dark Energy (DE) & Modified Gravity (MG) Combined Spectroscopic and Deeper Imaging surveys

- Full combination including cross-correlations using same sky
- Same-sky benefit substantial: x4 for DE, x2 for MG vs different hemispheres
- For 15,000 deg² LSST+4MOST FOM=54 (DE), 383 (MG) (Kirk, Private Communication)

Wide-WAVES (VST KiDS area) – 750 deg² 0 8M galaxies

- 750 deg², 0.8M galaxies, z<0.2
- Deep-WAVES
 - 100 deg², 1.2M galaxies, z<1.0
- Goals:
 - Galaxy formation to dwarf satellite scale, halo occupation
 - Evolution of mass & energy budget for z<1
 - Growth of structure on 1kpc-10Mpc scales for z<1

Galaxy+DM evolution (WAVES)

eROSITA complement

- German Russian X-ray mission, Launch late-2015
- 8x all sky survey, 0.5 –10 keV, beam ~25"
- Mission goals: Dark Matter and Energy, growth of structure
- 10⁵ galaxy clusters with >20 redshifts per cluster
 - **7**0⁶ AGN, 10⁶ Galactic sources
 - Strong cosmology constraints by cross-calibrating different tracers
 - AGN evolution and Galaxy-Black Hole connection

Gaia needs spectroscopic followup to achieve its full potential

- Gaia astrometric mission launched Dec-2013
 - paralaxes and proper motions for ~1 billion stars to m_{G} <20 mag
 - spectra for radial velocities and metallicities for 150 million stars to $m_G < ~15$ mag

In South so cover the bulge, disk, halo and the Magellanic Clouds

22

4MOST extents the Gaia 2 volume by >1000x in the red and >1 million in the blue!

4

Testing cosmology with Milky Way dynamics

- Obtaining R~5000 spectra of >10⁶ stars at |b|>30° allows us to:
 - Determine the Milky Way 3D potential from streams to ~100kpc
 - How is DM reacting to baryons:
 - has there been significant adiabatic contraction?
 - is there a disk-like DM component?
 - does the DM respond to the bar?
 - Determine the mass spectrum of Dark Matter 10^3 – $10^5 M_{\odot}$ halo substructure by the kinematic effects on cold stellar streams

4MOST | Reconstructing the Milky Way's History, Bad Honnef, 1–5 June 2

HR: Milky Way halo

- Observe ~100,000 halo stars with HR spectrograph
- Metallicity distribution function
 - Constraints on Pop III stars (IMF, rotation)
- Chemo-dynamical substructure
 - Identify stream of tidally disrupted dwarfs
 - Early chemical enrichment of streams (depends on a few stars)
 - Accreted versus in situ formation
- Include LMC & SMC + stream

Milky way bar creates moving groups in velocity distribution

Milky Way bulge chemo-dynamics

4

- Two formation scenarios:
 - Collapse/merging of proto-galaxies
 - Bar instability, disk buckling
- Observe ~150,000 giants, covering inner 1.5 kpc of the Milky Way
- Full coverage to understand effects of reddening and substructure
- Bulge-halo-thick disk connection?
- Search for chemo-dynamical substructures

Galaxia based mock catalogues

Observing TESS/PLATO bright sample

- 4MOST saturates for a 10th mag star in a default 20 min exposure in High Res Spectrograph (HR)
- With 2 min exposures we could cover 7.5th-11th mag stars in HR
 - Target densities ~10s-600 per pointing
 - ~15 exposures/hour
 - 11th-13th mag stars in parallel LR, on average 400 stars/pointing
- PLATO FoV 2250 deg² ~600 4MOST pointings = ~40 hours = ~4 bright nights (early release?)
- Entire sky in 40 bright nights
 - Can be done in one year using only the 4 nights around full moon
 - ~1M HR, ~2M LR objects to 13th mag
- Are repeats useful if we have velocity accuracy of 1 km/s? What if 400m/s, or 100 m/s?

26

TESS/PLATO stars in twilight?

- 20+ min at beginning and end of night for bright sample?
- ~8 exps/night -> full sky in <2 years
- At no cost to other 4MOST programs!

Other Science feasible with surveys with thousands to millions of objects

- High resolution spectroscopy survey of Open Clusters
- Radial velocities time series of low mass binary systems
- Star formation history of the Milky Way from 100,000 White Dwarfs
- Nature of peculiar variable stars discovered by Gaia, LSST, Euclid
- Chemo-dynamics of Magellanic Clouds and other satellites
- Follow-up of LSST and Euclid variables/transients
- Repeats on deep fields
- Reverberation mapping of AGNs
- Support Euclid photometric redshift calibrations (for z<0.9 and measuring intrinsic alignment galaxies)
- Redshifts of Euclid strong galaxy lensing candidates
- Nature of radio galaxies from SKA
- Characterisation of ~300k PLATO host stars
- Ages of astero-seismology objects from e.g. CoRoT, PLATO
- Insert your idea here

Consortium

- Facility Institutes ۲
 - Leibniz-Institut für Astrophysik Potsdam (AIP) (D)
 - MPI für Extraterrestrische Physik, München (D) _
 - Zentrum f
 ür Astronomie, Univ. of Heidelberg (D)
 - MPI für Astronomie, Heidelberg (D)
 - Institute of Astronomy, Cambridge University (UK) _ Vour institute here?
 - Australian Astronomical Observatory (AU) _
 - Centre de Recherche Astrophysique de Lyon (F)
 - NOVA/ASTRON (NL)
 - ESO, Garching (EU)
- Science Institutes ۲
 - University of Lund (S)
 - University of Uppsala (S)
 - University of Groningen (NL) _
 - L'Observatoire de Paris, GEPI, Paris (F)
 - University of Hamburg (D)

rijksuniversiteit

groningen

ASTRON RAL Space

Schedule and Milestones

Wide-field, high-multiplex optical spectroscopic survey facility for ESO

- Status:
 - Project approved by ESO, PD phase started, *operations 2021* (2x 5 year)
- Science:
 - Cosmology, galaxy evolution, high-energy and Galactic science
 - Complement large area space missions: Gaia, eROSITA, Euclid, PLATO
 - Complement ground-based surveys: VISTA, VST, DES, LSST, SKA, etc.
- Survey facility:
 - Instrument, science operations, data products, science
 - Run all-sky 5 year *public* surveys in parallel with yearly data releases
 - Key surveys organized by consortium in coordination with community
 - Add-on surveys from community through ESO peer-reviewed applications
- Instrument specifications:
 - High multiplex: 1600 fibres to R~5000 + 800 fibres R~20,000 in parallel
 - Wavelength: LR: 390-930 nm, HR: 392-437 & 515-572 & 605-675 nm
 - Large field-of-view on VISTA, 4m-class telescope: ø=2.7°

Special message

The Galaxy is BIG

- America's Galaxy is BIG
- Africa's Galaxy is BIG
- Australia's is BIG
- Asia's Galaxy is BIG
- Europe's Galaxy is BIG
- Lot's of work for all of us to do!

Diagnostic tools

Diagnostic tools

Fraction of completed targets by redshift bin

Figure-of-Merit (FOM = Metric)

 Monitor relative progress to assign proper weights

 Concentrate on redshifts z<~1 to complement Euclid, maximize area to increase number of targets for 4m telescope

Planned Simulation and Analyses Tools

- Consortium provides full forward modelling tools:
 - Astronomer provides simulation with selection observables
 - Select targets as for real catalogue
 - Create fields and observing schedule including competition from other surveys
 - Apply (simplified?) atmosphere and instrument model
 - Apply (simplified?) data reduction and parameter extraction model
- Is full MCMC modelling needed?

Data release and publication policies

- All raw data immediately public
- All 1D spectra immediately available to all surveys
- 1D spectra released to external public in yearly DRs
- Higher level data products as agreed between individual surveys and ESO, probably yearly data releases after 1-1.5 yr
- Publication policies similar to Sloan
 - First announce science project and papers
 - "Builders" (both facility and survey) have opt-in option on papers
 - Surveys can have additional rules
- Valid for both Consortium and Community surveys

Background: EU strategic docs

- A Science Vision for European Astronomy (ASTRONET)
 - Extreme Universe (Dark Energy & Dark Matter, Black holes)
 - Galaxy Formation & Evolution
 - Origin of Stars and Planets
 - Solar System
- ASTRONET Infrastructure Roadmap "A smaller project, but again of high priority, is a wide-field spectrograph for massive surveys with large optical telescopes."
- ESA-ESO Working Group on Galactic populations, chemistry and dynamics *"Blue multiplexed spectrograph on 4 or 8m class telescope"*
- Strategic Review on Europe's 2-4m telescopes over the decade to 2020 (ASTRONET/OPTICON)

"Optical wide-field spectrograph on 4m telescopes (N+S)"

4MOST | Reconstructing the Milky Way's History, Bad Honnef, 1–5 June 2015 | Roelof de Jong

A Science Vision for European Astronomy

The ASTRONET Infrastructure Roadmap: A Strategic Plan for European Astronomy Executive Summary

Cosmological constraints by obtaining redshifts and velocity dispersions of galaxy clusters

57

103

263

Wide-field Corrector can be inserted into VISTA like IR camera

Wide-field corrector VISTA \emptyset =2.5° includes an ADC, A&G, and WFS

Unique operational aspects

- All observation preparation including target catalogs, survey strategy, observing block creation, calibrations are shared between Surveys
- All data reduction up to 1D calibrated spectra is shared
- Consortium is performing these tasks for both Consortium and Community Surveys
- We need to perform these tasks absolutely impartially to avoid conflicts with Community
- ESO requests we perform this for the lifetime of instrument (~10 years)
- GTO return on this effort (second 5 years) still under negotiation with ES
 - ESO proposes secondment at ESO for Science Operations

4MOST | Recoi

Advantage of the optical wavelength range

4MOST | Reconstructing the Milky Way's History,

4MOST | Reconstructing the Milky Way's History, Ba

Proposed organisation breakdown

- Break work into Facility and Science part
- Science gets split between Survey Teams and Infrastructure Working Groups
- Science development overseen by the 4MOST Science Coordination Board (SCB)
- ESO Public Survey Panel approves all 4MOST Survey proposals

Competitiveness: Low-Resolution

Competitiveness: High-Resolution

