The vertical age structure of the Milky Way disc

Luca Casagrande

Australian National University

Photometric parameters for stellar and Galactic studies

Luca Casagrande

Australian National University

Fossis

chemical composition: ISM at the time and place of their formation orbits: encode residual information on dynamical history

Standardisation and absolute calibration

 $\mathcal{F}_{\lambda}(\text{Earth}) = \mathcal{F}_{\lambda}^{\text{std}}(\text{Earth}) 10^{-0.4(m_{\lambda} - m_{\lambda}^{\text{std}})}$

Even if the definition of a photometric system is sound:

its actual realisation at the telescope is non-trivial (surprise, surprise!)
converting magnitudes back into fluxes is non-trivial.

Standardisation and absolute calibration

Even if the definition of a photometric system is sound:

its actual realisation at the telescope is non-trivial (surprise, surprise!)
converting magnitudes back into fluxes is non-trivial.

Even if the definition of a photometric system is sound:

its actual realisation at the telescope is non-trivial (surprise, surprise!)
converting magnitudes back into fluxes is non-trivial.

Standardisation and absolute calibration

 $\mathcal{F}_{\lambda}(\text{Earth}) = \mathcal{F}_{\lambda}^{\text{std}}(\text{Earth}) 10^{-0.4(m_{\lambda} - m_{\lambda}^{\text{std}})}$

 $\simeq 1\% \simeq 20K$

Even if the definition of a photometric system is sound:

its actual realisation at the telescope is non-trivial (surprise, surprise!)
converting magnitudes back into fluxes is non-trivial.

Reddening

Heterochromatic measurement

$$\frac{\int f_{\lambda} T_{\zeta} \, \mathrm{d}\lambda}{\int T_{\zeta} \, \mathrm{d}\lambda} - -$$

Effective wavelength

Reddening

Heterochromatic measurement

$$\frac{\int f_{\lambda} T_{\zeta} \, \mathrm{d}\lambda}{\int T_{\zeta} \, \mathrm{d}\lambda}$$

Effective wavelength

In presence of reddening

$$A_{\lambda} = R_V E(B - V)[\dots \lambda \dots]$$

(this is the extinction, or attenuation)

Reddening

Heterochromatic measurement

$$\frac{\int f_{\lambda} T_{\zeta} \, \mathrm{d}\lambda}{\int T_{\zeta} \, \mathrm{d}\lambda}$$

Effective wavelength

In presence of reddening

 $A_{\lambda} = R_{V} E(B - V)[\dots \lambda \dots]$ $\int f_{\lambda} \longrightarrow f_{\lambda} 10^{-0.4A_{\lambda}}$

(this is the extinction, or attenuation)

In presence of extinction, the flux changes, and so does the effective wavelength of a filter

Self-consistent E(B-V)=0.6, Rv=3.1

Using E(B-V)=0.6 and R_V =3.1

Casagrande & VandenBerg (2014)

Self-consistent E(B-V)=0.6, Rv=3.1

Using E(B-V)=0.6 and R_V =3.1

Using E(B-V)=0.6 with An et al (2009) coefficients

Using E(B-V)=0.6 with McCall (2004) coefficients

> all these coefficients are correct for the spectral types they have been derived for! They cannot be applied at their face value to every stars (unfortunately this is often done)

Casagrande & VandenBerg (2014)

Unbiased

target selection based on observables (colour and mag)
luxury of throwing away a few % of your stars
large colour interval
Read the fine print: forward modelling and/or minor bias corrections might still be needed.

Bulge: metallicity / reddening / structure

Disc/halo tomography

Geneva-Copenhagen Survey

Nordström et al. 2004; Holmberg et al. 2007, 2009; Casagrande et al. 2011

16,000 FKG dwarfs

✓Kinematic (U,V,W)
✓Hipparcos (i.e. π,Tycho2 photometry)
✓2MASS photometry
✓Strömgren colours

Geneva-Copenhagen Survey

Nordström et al. 2004; Holmberg et al. 2007, 2009; Casagrande et al. 2011

16,000 FKG dwarfs

✓Kinematic (U,V,W)
✓Hipparcos (i.e. π,Tycho2 photometry)
✓2MASS photometry
✓Strömgren colours

✓Metallicities

Geneva-Copenhagen Survey

Nordström et al. 2004; Holmberg et al. 2007, 2009; Casagrande et al. 2011

16,000 FKG dwarfs

✓Kinematic (U,V,W)
✓Hipparcos (i.e. π,Tycho2 photometry)
✓2MASS photometry
✓Strömgren colours

√Stellar Parameters (T_{eff}) √Metallicities

Geneva-Copenhagen Survey

Nordström et al. 2004; Holmberg et al. 2007, 2009; Casagrande et al. 2011

16,000 FKG dwarfs

✓Kinematic (U,V,W)
✓Hipparcos (i.e. π,Tycho2 photometry)
✓2MASS photometry
✓Strömgren colours

✓ Stellar models: ages
✓ Stellar Parameters (T_{eff})
✓ Metallicities

Geneva-Copenhagen Survey

Nordström et al. 2004; Holmberg et al. 2007, 2009; Casagrande et al. 2011

16,000 FKG dwarfs

✓Kinematic (U,V,W)
✓Hipparcos (i.e. π,Tycho2 photometry)
✓2MASS photometry
✓Strömgren colours

✓ chemical & dynamical evol.
✓ Stellar models: ages
✓ Stellar Parameters (T_{eff})
✓ Metallicities

cf. e.g. Pont & Eyer (2004), Jørgensen & Lindegren (2005), Burnett & Binney (2010), Serenelli et al. (2013)

Sweeping (many things) under the rug

ensamble: probabilistic ages are OK 📅 star-by-star: deterministic ages with care

cf. e.g. Pont & Eyer (2004), Jørgensen & Lindegren (2005), Burnett & Binney (2010), Serenelli et al. (2013)

Sweeping (many things) under the rug

cf. e.g. Pont & Eyer (2004), Jørgensen & Lindegren (2005), Burnett & Binney (2010), Serenelli et al. (2013)

Metallicity Distribution Function

Metallicity Distribution Function

Age-Metallicity Distribution Function

only good ages are used: $\sigma < 1$ Gyr or relative uncertainty < 25%

Age-Metallicity Relation

YES/Maybe/NO: e.g, Twarog+ 1980, Edvardsson+ 1993, Rocha-Pinto+2000, Feltzing & Holmberg 2001, Nordstrom+ 2004, Haywood+ 2008, Bergemann+ 2014

Ages and Gradients

Age Dispersion relation

e.g. von Hoerner 1960, Mayor 1974

Strömgren survey for Asteroseismology and Galactic Archaeology

WFC @ INT: •2.5 m •34' x 34' FOV •Strömgren uvby •28 nights (2012-2014) •37 nights (2015)

Casagrande, Silva Aguirre, Serenelli, Stello, Huber, Feltzing, Schlesinger

Strömgren survey for Asteroseismology and Galactic Archaeology

WFC @ INT: •2.5 m •34' x 34' FOV •Strömgren uvby •28 nights (2012-2014) •37 nights (2015)

989 seismic stars 29000 stars

Casagrande, Silva Aguirre, Serenelli, Stello, Huber, Feltzing, Schlesinger

In situ

Casagrande et al. (2014)

WYSIWYG?

(the magic of asteroseismology?)

Benchmarking

all stars

Benchmarking

V < 14

V < 14

Stellar mass gradient

Casagrande, Silva Aguirre, Schlesinger et al. (submitted)

Stellar mass gradient

Casagrande, Silva Aguirre, Schlesinger et al. (submitted)

Ages: Giants

RGB : Once a star has evolved to the red-giant phase, its age is determined to good approximation by the time spent in the core-hydrogen burning phase, and this is predominantly a function of mass.

Ages: Giants

RGB : Once a star has evolved to the red-giant phase, its age is determined to good approximation by the time spent in the core-hydrogen burning phase, and this is predominantly a function of mass.

Stellar mass gradient

Casagrande, Silva Aguirre, Schlesinger et al. (submitted)

Vertical age gradient

(MNRAS, submitted)

Age Metallicity Relation (MNRAS, submitted)

Secondary to primary # ratio

Secondary to primary # ratio

Conclusions

Photometry: powerful tool gauge into selection function(s)

Asteroseismic R,M,t: "if it is not true, it is well conceived!"

Galactic studies: we can now obtain constraints similar to those available for the solar neighbourhood