

Solar-like oscillators

Information in the frequency power spectrum

UNIVERSITY^{OF} BIRMINGHAM Guy R. Davies +

Oscillations produce variations in intensity (ℓ,m) : (3, 1)(3, 2)(3, 0)(3, 3) $i = 0^{\circ}$ 0 $i = 30^{\circ}$ $^{-1}$

Sun-like stars

Solar type	Solar analog	Solar twin
K2 through to F8	5200 to 6300 K	5720 to 5830 K
Main sequence	Main sequence and no close companion	MS, 3.5 to 5.6 Gyr, and no stellar companion
Any metallicity	Solar +- 0.3 dex	Solar +- 0.05 dex
A lot of stars	>30 within 50 ly e.g., Alpha Cen A (& B)	A handful e.g., 18 Sco

Solar-like oscillators

Evolved Sun- like stars	Solar type	Solar analog	Solar twin	The Sun
Cooler	K2 through to F8	5200 to 6300 K	5720 to 5830 K	5777 K
Sub giant Red giant	Main sequence	Main sequence	MS, 3.5 to 5.6 Gyr	4.5 Gyr
Any	Any metallicity	Solar +- 0.3 dex	Solar +- 0.05 dex	Solar
Many many detectable	A lot	>30 within 50 ly e.g., Alpha Cen A (& B)	A handful e.g., 18 Sco	Just the one!
UNIVERSITY				

BIRMINGHAM

Asteroseismology of Solar-Type and Red-Giant Stars Annual Review of Astronomy and Astrophysics Vol. 51: 353-392 (Volume publication date August 2013) First published online as a Review in Advance on June 26, 2013

DOI: 10.1146/annurev-astro-082812-140938

William J. Chaplin and Andrea Miglio

Sun-like MS stars - echelle diagram

PER AD ARDUA ALTA

Chaplin & Miglio, ARAA, 2013

UNIVERSITYOF BIRMINGHAM

ncy (µHz)

anb

Frequency modulo 4.10 µHz

Observations and constraint

Evolved Sun- like stars	Solar type	Solar analog	Solar twin	The Sun
Cooler	K2 through to F8	5200 to 6300 K	5720 to 5830	5777 K
Sub giant Red giant	Main sequence	Main sequence	₩S, 3.5 to 5.6 Gyr	4.5 Gyr
Any	Any metalling	Solar +- 0.3 🛶		ress
Many many detectable	A lot	>30 within 50 ly e.g., Alpha Cen A (& B)	A handful e.g., 18 Sco	Just the one!
UNIVERSITY OF		I	1	11

Observations and constraint

Observable	Solar type red giant	Solar type subgiant	Solar type main sequence	The Sun
Average frequency spacings + numax				
Period spacing				
Rotation				
Individual frequencies UNIVERSITY ^{OF} BIRMINGHAM				

Sun-like evolved stars

KIC 7341231 -"Otto"

Mixed modes of oscillation

KIC 7341231 -

Mixed modes of oscillation

UNIVERSITY^{of} BIRMINGHAM

"Otto"

Sun-like red giant branch

 $(\text{ppm}^2 \,\mu\text{Hz})$

Power

Rotation

 60° 30° 0° Figure 6. Intensity perturbations for l = 1 mode components, at a phase

90°

corresponding to extreme displacement of the oscillations. Plotted are patterns for m = 1 (left-hand column) and m = 0 (right-hand column) modes viewed at different angles, $i_s = 90^{\circ}$ (top row), 60° (second row), 30° (third row), and 0° (bottom row). The filled circles mark the pole of the rotation axis and the lines the stellar equator.

Internal rotation

$$\delta v_{nlm} = \int_0^\pi \int_0^R \mathcal{K}_{nlm}(r,\theta) \mathcal{N}(r,\theta) r dr d\theta.$$

Internal rotation

Internal rotation - 1D

$\delta v_{n,l} = (2\pi)^{-1} \int_0^R K_{n,l}(r) \Omega(r) dr.$

UNIVERSITYOF BIRMINGHAM

Deheuvels+ 2012

0.8

1.0

0.0

0.2

0.4

r/R

0.6

0.8

1.0

Internal rotation - 1D

0.2

0.4

r/R

0.6

0.0

UNIVERSITY^{of} BIRMINGHAM

Frequency

Rotation - 1D

Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes

Paul G. Beck¹, Josefina Montalban², Thomas Kallinger^{1,3}, Joris De Ridder¹, Conny Aerts^{1,4}, Rafael A. García⁵, Saskia Hekker^{6,7}, Marc-Antoine Dupret², Benoit Mosser⁸, Patrick Eggenberger⁹, Dennis Stello¹⁰, Yvonne Elsworth⁷, Søren Frandsen¹¹, Fabien Carrier¹, Michel Hillen¹, Michael Gruberbauer¹², Jørgen Christensen-Dalsgaard¹¹, Andrea Miglio⁷, Marica Valentini², Timothy R. Bedding¹⁰, Hans Kjeldsen¹¹, Forrest R. Girouard¹³, Jennifer R. Hall¹³ & Khadeejah A. Ibrahim¹³

UNIVERSITY^{OF} BIRMINGHAM

Frequency (µHz)

What happens when you only have 27 days of data? (e.g. TESS)

UNIVERSITY^{OF} BIRMINGHAM

dnu = 13 +- 1 muHz numax = 160 muHz period spacing = ? rotation = ? Individual frequencies - for l=0

What happens when you only have 70 days of data? (e.g. K2)

dnu = 13.3 +- 0.7 muHz numax = 161.2 muHz period spacing = ? rotation = ? Individual frequencies - for l=0,2

What happens when you only have 351 days of data? (e.g. Best TESS)

What happens when you only have 351 days of data? (e.g. Best TESS)

dnu = 12.9 +- 0.2 muHz numax = 162.6 muHz period spacing = 80.45 +- 0.04 s rotation <Omega Core> = 0.43 +- 0.03 muHz Individual frequencies - for l=0,2,1,(3)

dnu = 12.97 +- 0.17 muHz numax = 161.3 muHz period spacing = 80.45 +- 0.02 s rotation <Omega Core> = 0.44 +- 0.04 muHz Individual frequencies - for l=0,2,1,3

What happens when you only have 1335 days of data? (e.g. Best PLATO/Kepler)

What happens when you only have 1335 days of data? (e.g. Best PLATO/Kepler)

Observations and constraint

Observable	Red giant	Solar type subgiant	Solar type main sequence	The Sun
Average frequency spacings + numax				
Period spacing	Probably (not all)	Possibly	Difficult	Very difficult
Rotation	Probably (even less than above)	Radial differential rotation - some	Average splitting	Helioseismology - map of interior
Individual frequencies UNIVERSITY ^{OF} BIRMINGHAM	Yes - Mode ID is/was a problem Benoit	Yes	Yes	Yes

Getting from observables to intrinsic properties you lot care about ...

Why should we correct reported pulsation frequencies for stellar line-of-sight Doppler velocity shifts?

G. R. Davies,^{1,2}* R. Handberg,^{1,2} A. Miglio,^{1,2} T. L. Campante,^{1,2} W. J. Chaplin^{1,2} and Y. Elsworth^{1,2}

¹School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
²Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark

UNIVERSITY^{OF} BIRMINGHAM

Figure 2. Differences in published (e.g. Solar system barycentric frame of reference) and Doppler shift corrected (source frame of reference) pulsation frequencies for a selection of stars and modes of oscillation. The left-hand panel gives the differences as a function of frequency while the right-hand panel displays the difference divided by the uncertainty.