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Iron line formation & abundance:  Quite important!

Large-scale surveys (current + upcoming): 
GAIA-ESO ,CoRoT, PLATO, ...

➔  Chemical evolution of the Galaxy 
➔  Proxy of total metal content in stars ~ [Fe/H]
➔  Determination of fundamental atmospheric parameters
 

  



  

Gustafsson (2009)

Abundace determination:Abundace determination:

Non-LTE: Quantum 
calculations needed. 
Situation for radiative 
transitions (f, σ )  (TOP 
BASE,NIST,KALD,..)    
ahead of collisional 
transitions for most 
elements.

Different input 
atmospheric stellar 
parameters can 
provide different 
accuracies in
the obtained 
abundances 

LTE, non-LTE, 1D, 
3D



  

➔ Two main impact perturbers play the important role of collisions in cool stars: 
Electrons & neutral Hydrogen atoms (Plaskett, 1955)

➔ Even though the collisional frequency of electrons is higher:
ve/vH = (mH/me)

1/2
 , however for transitional energies < 4eV hydrogen collisions 

dominate (Anderson 1981; Lambert 1993)
   

➔ In addition, nH/ne ~ 104  esp. for metal poor stars
      → Inclusion of H collisions quite important for better models!

Status Quo?

 → For electrons, more quantum cross-sections being calculated for more 
atoms, including Fe (IRON Project: Zhang & Pradhan, (1995,1997), Pelan et al. 1997) 

 



  

For H collisions, quantum cross sections exist only  for a few atoms 
(Li,Na,Al,Mg,Si)  (Belyaev, Barklem et al. 2003,2011,2012,2013,2014)

but none for Fe (yet! Soon?)

➔ Lack of Quantum data ~ tendency for approximations          hold  uncertainties.

➔ Drawin (1968,1969) approx. recipe written for A + A        A + A  collisions 
derived from Thompson (1912)  for e- + A collisional cross sections.

➔ Rewritten by Steenbock & Holweger (1985) for A + H        A + H collisions.

➔ Shown to overestimate quantum calculations by orders of magnitude.

Barklem (2011), Na(3s) + H        Na(3s) + H
collisional cross-sections: Drawin vs. Quantum 
vs. experimental data. 
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The Curious case of Hydrogen collisions:The Curious case of Hydrogen collisions:

 → A global scaling fudge factor SH is applied to fit the observations. Different 
values have been implied from different fitting methods for Fe:
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Thevenin & Idiart (line fitting,    
       significant non-LTE effects)

Gratton et al. (RR Lyrae stars 
       calibration, small non-LTE effects)

Gehren et al. (small non-LTE effects) 

Mashonkina et al.
Bergemann et al.

Different methods, model atoms, stars            Different SH values.

FeI/FeII ionization equilibrium



  

So Whats new?So Whats new?

Recent quantum calculation show domination of charge exchange of 
atoms with neutral H : A + H        A+ + H--                                                   

(Belyaev, Barklem et al. 2003,2011,2012,2013,2014)

➔ Mg + H rate coeffs. 
For collisional 
transitions from 
different states.

➔ Ion-pair production 
(charge exchange) 
dominate the 
collisional processes 

Barklem et al. (2012)



  

Si(3p3d) + H

➔ Same has been shown for Al & Si & ...

Belyaev (2013) Belyaev et al. (2014)



  

Question: What is the role of charge exchange with Iron + H? 

Method:
➔ Built rather complete FeI/FeII model atom including most up-to-date 

radiative and collisional atomic data (when available) from atomic 
databases: NIST,VALD,KALD,TOPBASE,NORAD, ...  
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Question: What is the role of charge exchange with Iron + H? 

Method:
➔ Built rather complete FeI/FeII model atom including most up-to-date 

radiative and collisional atomic data (when available) from atomic 
databases: NIST,VALD,KALD,TOPBASE,NORAD, ... .

➔ Started from reliable atmospheric parameters, namely logg from 
asteroseismology, benchmark stars.

➔ Coupled all energy levels with hydrogen collisions (excitation, ionization & 
charge exchange) a la Drawin scaled by different SH values (globally) for 
each type of process.

➔ Performed non-LTE calculations for all different models & compared with 
observed Equivalent widths EW(obs).
 



  



  



  



  



  

 → To confirm the method, we  also did the same calculations for Silicon for which 
quantum rates for low energy levels excitations and charge exchange exist

 → EW(quantum) vs. EW(Drawin) for different SH recipes 

 → lines 1eV < ∆E < 4eV  

 → Benchmark stars 

 → Built 2 Si I model atoms:
    
                                   → Quantum data for Hydrogen collisions & charge    
                                     exchange (Belyaev et al. 2014)

            → Drawin approx. for Hydrogen collisions & charge 
              exchange with different scaling factors



  



  



  



  



  

Large scale tests of our model: 

 → Being part of the GES-CoRoT effort to derive accurate fundamental 
parameters of a large sample of stars (616) (UVES + GIRAFFE spectra).

 → Calculated ~ 10,500 non-LTE models for a large grid of atmospheric 
parameters (MARCS atmosphere models):      
                 Teff = [3500 , 7000], ∆E =250K

  Logg = [0.5 , 5], ∆ logg = 0.5dex
  [Fe/H] = [-3.00 , +0.75],  ∆ [Fe/H]=0.25dex
  ξ

t 
= [0 , 5], ∆ξ

t
=1km/s

 → We wrote a robust multi-dimensional non-linear least fitting code based on 
the Levenberg-Marquardt algorithm.

 → Starting from asteroseismic logg, derived non-LTE / LTE Teff, [Fe/H] & 
microturbulent velocities ξ

t
 by least χ2 fitting observed EW to calculated EW.



  

Ges-CoRoT Results:



  



  

Conclusions:Conclusions:

 → Hydrogen collisions play an important role in Fe line formation.

 → We have shown that charge exchange of Fe + H   Fe→ + + H- dominates 
over the hydrogen processes, thus in accordance with quantum calculations 
obtained for other elements.

 → The tests of our model (including charge exchange) proved consistent in 
deriving atmospheric parameters for a large sample of stars (GES-CoRoT).   

Perspectives:Perspectives:

 → Energy dependent SH for the dominant charge exchange.

 →  Include 3D effects, convection.

 → Inclusion of quantum cross-sections for Fe + H once calculated.
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