Bad Honnef - 02-06-15

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Non-LTE iron abundances in cool stars: The role of hydrogen collisions

Rana Ezzeddine¹

Collaboration with: Bertrand Plez¹ Thibault Merle²

Université de Montpellier, Laboratoire Univers et particules de Montpellier, Montpellier, France
 Université Libre de Bruxelles, Institut d'Astronomie et d'Astrophysique, Brussels, Belgium

Iron line formation & abundance: Quite important!

Large-scale surveys (current + upcoming): GAIA-ESO ,CoRoT, PLATO, ...

- Chemical evolution of the Galaxy
- → Proxy of total metal content in stars ~ [Fe/H]
- Determination of fundamental atmospheric parameters

Abundace determination:

Non-LTE: Quantum calculations needed. Situation for radiative transitions (f, σ) (TOP BASE,NIST,KALD,..) ahead of collisional transitions for most elements.

Gustafsson (2009)

- Two main impact perturbers play the important role of collisions in cool stars: Electrons & neutral Hydrogen atoms (Plaskett, 1955)
- → Even though the collisional frequency of electrons is higher:
 v_e/v_H = (m_H/m_e)^{1/2}, however for transitional energies < 4eV <u>hydrogen collisions</u>
 dominate (Anderson 1981; Lambert 1993)
- \rightarrow In addition, $n_{\rm H}/n_{\rm e} \sim 10^4$ esp. for metal poor stars
 - → Inclusion of H collisions quite important for better models!

Status Quo?

→ For electrons, more quantum cross-sections being calculated for more atoms, including Fe (IRON Project: Zhang & Pradhan, (1995, 1997), Pelan et al. 1997)

For H collisions, quantum cross sections exist only for a few atoms (Li,Na,Al,Mg,Si) (Belyaev, Barklem et al. 2003,2011,2012,2013,2014)

but none for Fe (yet! Soon?)

- Lack of Quantum data ~ tendency for approximations hold uncertainties.
- → Drawin (1968,1969) approx. recipe written for <u>A + A</u> → <u>A + A</u> collisions derived from Thompson (1912) for <u>e- + A</u> collisional cross sections.
- → Rewritten by Steenbock & Holweger (1985) for $A + H \longrightarrow A + H$ collisions.
- → Shown to overestimate quantum calculations by orders of magnitude.

Barklem (2011), Na(3s) + H → Na(3s) + H collisional cross-sections: Drawin vs. Quantum vs. experimental data.

The Curious case of Hydrogen collisions:

→ A global scaling fudge factor $S_{_{H}}$ is applied to fit the observations. Different values have been implied from different fitting methods for Fe:

Different S_{μ} values.

Different methods, model atoms, stars

So Whats new?

Recent quantum calculation show domination of charge exchange of atoms with neutral H : A + H \longrightarrow A⁺ + H⁻⁻ (Belyaev, Barklem et al. 2003,2011,2012,2013,2014)

- → Mg + H rate coeffs.
 For collisional transitions from different states.
- → Ion-pair production
 (charge exchange)
 dominate the
 collisional processes

Barklem et al. (2012)

→ Same has been shown for AI & Si & ...

Method:

→ Built rather complete Fel/Fell model atom including most up-to-date radiative and collisional atomic data (when available) from atomic databases: NIST,VALD,KALD,TOPBASE,NORAD, ...

Method:

- Built rather complete Fel/Fell model atom including most up-to-date radiative and collisional atomic data (when available) from atomic databases: NIST,VALD,KALD,TOPBASE,NORAD,
- Started from reliable atmospheric parameters, namely logg from asteroseismology, benchmark stars ...

Method:

- Built rather complete Fel/Fell model atom including most up-to-date radiative and collisional atomic data (when available) from atomic databases: NIST,VALD,KALD,TOPBASE,NORAD,
- Started from reliable atmospheric parameters, namely logg from asteroseismology, benchmark stars.
- Coupled all energy levels with electron & hydrogen collisions (excitation, ionization & charge exchange) a la Drawin scaled by different S_H values (globally) for each type of process.

Method:

- Built rather complete Fel/Fell model atom including most up-to-date radiative and collisional atomic data (when available) from atomic databases: NIST,VALD,KALD,TOPBASE,NORAD,
- Started from reliable atmospheric parameters, namely logg from asteroseismology, benchmark stars.
- Coupled all energy levels with hydrogen collisions (excitation, ionization & charge exchange) a la Drawin scaled by different S_H values (globally) for each type of process.
- → Performed non-LTE calculations for all different models & compared with observed Equivalent widths EW(obs).

Sun ,non-LTE

Sun ,non-LTE

HD140283 ,non-LTE

HD140283 ,non-LTE

 \rightarrow To confirm the method, we also did the same calculations for Silicon for which quantum rates for low energy levels excitations and charge exchange exist

 \rightarrow EW(quantum) vs. EW(Drawin) for different S_µ recipes

- \rightarrow lines 1eV < ΔE < 4eV
- → Benchmark stars
- \rightarrow Built 2 Si I model atoms:
 - → Quantum data for Hydrogen collisions & charge exchange (Belyaev et al. 2014)
 - → Drawin approx. for Hydrogen collisions & charge exchange with different scaling factors

Silicon model atom

Sun ,non-LTE

HD140283 (metal poor Halo sub-giant),non-LTE

Large scale tests of our model:

 \rightarrow Being part of the GES-CoRoT effort to derive accurate fundamental parameters of a large sample of stars (616) (UVES + GIRAFFE spectra).

→ Calculated ~ 10,500 non-LTE models for a large grid of atmospheric parameters (MARCS atmosphere models):

Teff = [3500 , 7000],
$$\Delta E$$
 =250K
Logg = [0.5 , 5], $\Delta logg$ = 0.5dex
[Fe/H] = [-3.00 , +0.75], Δ [Fe/H]=0.25dex
 ξ_t = [0 , 5], $\Delta \xi_t$ =1km/s

→ We wrote a robust multi-dimensional non-linear least fitting code based on the Levenberg-Marquardt algorithm.

→ Starting from asteroseismic log*g*, derived non-LTE / LTE Teff, [Fe/H] & microturbulent velocities ξ_{t} by least χ^{2} fitting observed EW to calculated EW.

Conclusions:

 \rightarrow Hydrogen collisions play an important role in Fe line formation.

→ We have shown that charge exchange of Fe + H → Fe⁺ + H⁻ dominates over the hydrogen processes, thus in accordance with quantum calculations obtained for other elements.

→ The tests of our model (including charge exchange) proved consistent in deriving atmospheric parameters for a large sample of stars (GES-CoRoT).

Perspectives:

- → Energy dependent S_{μ} for the dominant charge exchange.
- \rightarrow Include 3D effects, convection.
- → Inclusion of quantum cross-sections for Fe + H once calculated.

