





Gaia

C. Cacciari INAF - Osservatorio Astronomico, Bologna

The primary objective of Gaia is the Galaxy: to observe the physical characteristics, kinematics and distribution of stars over a large fraction of its volume, with the goal of achieving a full understanding of the MW dynamics and structure, and consequently its formation and history. (Concept and Technology Study Report, ESA-SCI(2000)4

Reconstructing the Milky Way's History: Spectroscopic Surveys, Asteroseismology and Chemodynamical Models 1 - 5 June 2015, Physikzentrum Bad Honnef, GERMANY

## Gaia in a nutshell

- ESA cornerstone mission building on the Hipparcos heritage
- Satellite & payload by industry management & operations by ESA data processing by scientists (DPAC)
- Launch 19 Dec 2013 with Soyuz from Kourou
- 5 years of operations at L2
- Commissioning completed 18 July 2014
- Data collection: up to 21 million transits per square deg up to end of March
- ➤ all sky survey to R<sub>lim</sub> = 20 21, ≥ 10<sup>9</sup> sources
- µas accuracy astrometry (parallaxes, positions, proper motions)
- > optical spectrophotometry (luminosities, astrophysical parameters)
- spectroscopy to V = 15-16 (radial velocities), to V= 11-12 (rotation, chemistry)







#### Lissajous orbit around L2

Figure courtesy A. Buzzoni

### Payload and Telescope



### Sky Scanning Principle



Spin axis: 45° to Sun Spin/Scan rate: 60 arcsec/s Spin period: 6 hr

FoV-1:  $t_0 \& t_0 + 6hr$ 

FoV-2:  $t_0 + 106.5m \& t_0 + 106.5m + 6hr$ 

repeated 10-30 days later

Precession of spin axis around solar direction in 63 days  $\rightarrow$  29 revolutions in 5 yr

### End of mission sky-average number of transits: ~ 70 (max $\geq$ 200 at $|\beta|$ = 45° ± 10°)



#### Ecliptic coordinates

Galactic coordinates

### The instruments



## Focal Plane

104.26cm



#### **Total field:**

- active area: 0.75 deg<sup>2</sup>
- CCDs: 14 + 62 + 14 + 12
- each CCD: 4500x1966 px (TDI)
- pixel size =  $10 \ \mu m \ x \ 30 \ \mu m$ 
  - = 59 mas x 177 mas

#### Sky mapper:

- detects all objects to 20 mag
- rejects cosmic-ray events
- FoV discrimination

#### Astrometry:

- total detection noise: 6 e<sup>-</sup>

#### **Photometry:**

- spectro-photometer
- blue and red CCDs

#### Spectroscopy:

- high-resolution spectra
- red CCDs

### Gaia science products: census of ...

#### Stellar pops in the Galaxy

(based on the Besançon Galaxy model - *Robin et al. 2003, 2004*)

- Disk: 9.0 × 10<sup>8</sup>
- Thick disk: 4.3 x 10<sup>8</sup>
- Spheroid: 2.1 x 10<sup>7</sup>
- Bulge: 1.7 × 10<sup>8</sup>

#### Special objects in the Galaxy

- Solar System bodies (3 × 10<sup>5</sup>)
- exoplanets (a few 10<sup>4</sup>)
- binaries & rare stellar types (fast evolutionary phases)
- WDs (~ 2 × 10<sup>5</sup>), BDs (~ 5 × 10<sup>4</sup>)

#### Outside the Galaxy

- brightest stars in nearby (LG) galaxies
- supernovae and burst sources (~2 × 10<sup>4</sup>)
- galaxies (10<sup>6 -</sup> 10<sup>7</sup>)
- QSOs (~ 5 x 10<sup>5</sup>)
- gravitational lensing events:
  < 10<sup>2</sup> photometric; a few 10<sup>2</sup> astrometric

#### **Fundamental Physics**

γ to ~ 5 × 10<sup>-7</sup> (10<sup>-4</sup> - 10<sup>-5</sup> present)

### One billion stars in 5D (6D ... 9D) will provide:

#### in the Galaxy ...

positions & distances, velocity distributions and astrophysical parameters (APs) of all **stellar populations in the MW** to unprecedented accuracy, allowing to:

- map the spatial and dynamical structure of bulge, disk(s) and halo(s)
- derive formation and chemical history (e.g. accretion and/or interaction events) of the MW & star formation history throughout
- ➢ obtain the trigonometric calibration of primary distance indicators (RR Lyraes, Cepheids) → accurate and robust definition of the cosmic distance scale

#### and beyond the Galaxy ...

- QSO detection and definition of rest frame
- structure & stellar population studies in nearby galaxies

### Astrometric performance

- Sky-averaged end-of-mission parallax standard error in units of µas
- Upper and lower curves show expected variations due to position on the sky, star colour, and bright-star observing conditions (TDI gates, onboard mag-estimation errors etc.)
- The slight upturn of the linear relation in log space starting at ~ 17 mag is mainly caused by straylight



### Preliminary results: astrometry



Gaia astrometric positions placed over HST images. Gaia positions from Initial Data Treatment in a routine mode, with a very preliminary attitude determination. 9 new observations of Q2237+030 and 16 for HE0435-1223 by end 2015 + improved attitude determination → much better accuracy

Credits: ESA/Gaia/DPAC/C. Ducourant, J-F. Lecampion (LAB/Observatoire de Bordeaux), A. Krone-Martins (SIM/Universidade de Lisboa, LAB/Observatoire de Bordeaux), L. Galluccio, F. Mignard (Observatoire de la Côte d'Azur, Nice)

### Photometric performance



Figure courtesy C. Jordi & J.-M. Carrasco

|         | B1V |    |     | G2V |    |    | M6V |     |    |
|---------|-----|----|-----|-----|----|----|-----|-----|----|
| G [mag] | G   | BP | RP  | G   | BP | RP | G   | BP  | RP |
| 15      | 1   | 4  | 4   | 1   | 4  | 4  | 1   | 7   | 4  |
| 18      | 2   | 8  | 19  | 2   | 13 | 11 | 2   | 89  | 6  |
| 20      | 6   | 51 | 110 | 6   | 80 | 59 | 6   | 490 | 24 |

End-of-mission photometric errors, in units of mmag, considering all known instrumental effects including straylight, as well as a 20% science margin

- Astrophysical parameters (AP) can be derived using Gaia spectro-photometric data, sometimes in combination with astrometric and spectroscopic data.
- Preliminary internal accuracy (rms residuals) of AP estimates to be reassessed on real data - on F, G, K, M dwarfs and giants for a wide range of metallicites and interstellar extinctions are (Bailer-Jones+2013, A&A 559, A74):

|                | $T_{eff}$ | Av      | logg     | [M/H]   |
|----------------|-----------|---------|----------|---------|
| G=15 (V~15-17) | ~ 100 K   | 0.1 mag | 0.25 dex | 0.2 dex |

The accuracy is a strong function of the parameters themselves, varying by a factor of more than two up or down over this parameter range

### Preliminary results: photometry I RR Lyraes in the LMC

G-band light curves of RRL stars in the LMC observed by Gaia during the Ecliptic Pole scanning (July 2014)

-- Data points from 118 and 96 observations spread over 28 days

-- median uncertainty of measurements ~ 0.02 mag

> 800 measured, including some hundreds new discoveries, with typical average mag G ~ 19.5 Gaia image of the week 5 March 2015 RR LYRAE STARS IN THE LARGE MAGELLANIC CLOUD AS SEEN BY GAIA



I-band light curves obtained by OGLE IV for the same stars

ESA/Gaia/DPAC/CU5/CU7/INAF-OABo, G. Clementini, D. Evans, L. Eyer, K. Nienartowicz, L. Rimoldini and the Geneva CU7/DPCG and CU7/INAF-OACN teams

#### Preliminary results: photometry II Cepheids in the LMC

G-band light curves of short period/faint (G = 18.3-18.7) Cepheids in the LMC observed by Gaia during the Ecliptic Pole scanning (July 2014)

- -- Data points from 31 to 56 observations each star, spread over 32 days
- -- median uncertainties of the measurements ~ 10-15 mmag
- -- Cepheid magnitude distribution peaks at G ~ 15.5 mag (Mv ~ -3, P ~ 3-5 days)

Credits: ESA/Gaia/DPAC/CU5/DPCI/CU7/INAF-OABo/INAF-OACn G. Clementini, V. Ripepi, S. Leccia, L. Eyer, L. Rimoldini, I. Lecoeur-Taibi, N. Mowlavi, D. Evans, Geneva CU7/DPCG and the whole CU7 team. The photometric data reduction was done with the PhotPipe pipeline at DPCI; processing data were received from the IDT pipeline at DPCE.

#### Gaia image of the week 28 May 2015



### Spectroscopic performance

End-of-mission radial-velocity errors, considering all known instrumental effects including straylight as measured during the in-orbit commissioning phase, as well as a 20% science margin

| Spectral type         | V [mag] | Radial-velocity error | [km s <sup>-1</sup> ] |
|-----------------------|---------|-----------------------|-----------------------|
| B1V                   | 7.5     | 1                     |                       |
| DIV                   | 11.3    | 15                    |                       |
| C2V                   | 12.3    | 1                     |                       |
| 027                   | 15.2    | 15                    |                       |
| K1III-MP (metal-noor) | 12.8    | 1                     |                       |
| KTU-WL (Herg-bool)    | 15.7    | 15                    |                       |



### Preliminary RVS results at bright end



### Data processing & distribution

- ➤ Data Processing and Analysis Consortium (DPAC): ≥ 450 people from 20 European countries and ESA
- No proprietary data rights
- Science alerts (e.g. SNe) data released immediately
- Final catalogue ~ 2020-22
- Intermediate data releases:

**GDR1:** Mid-2016 Positions + G magnitude (~ 90% sky, single stars) Includes more often scanned Ecliptic Pole regions (~ 1 deg) Hundred Thousand Proper Motions (HTPM Hipparcos-Gaia, ~ 50 µas/yr) **GDR2:** Early 2017 radial velocities for bright stars, two-band photometry, and full astrometry ( $a, \delta, w, \mu_a, \mu_{\delta}$ , ) where available

Two more intermediate releases (2017/18 and 2018/19) TBD

### Stellar populations of the MW

Some selected kinematic tracers:  $\sigma_{vel}$  = velocity dispersion of MW component

| MW            | Tracer                                | Mv                  | Av          | D              | V                  | σ <sub>vel</sub>  | Gaia σ <sub>μ</sub>              |
|---------------|---------------------------------------|---------------------|-------------|----------------|--------------------|-------------------|----------------------------------|
| component     |                                       | mag                 | mag         | kpc            | mag                | km/s              | µas/yr - km/s                    |
| Bulge         | gM (M0III)                            | -1                  | 5           | 8              | 18.5               | 100               | 67 - 2.5                         |
|               | HB (A5V)                              | +0.5                | 5           | 8              | 20                 | 100               | 324 - 12                         |
|               | MS-TO (G2V)                           | +4.5                | 2           | 5              | 20                 | 100               | 290 - 6.9                        |
| Thin disk     | gK (K3III)                            | 0                   | 2           | 10             | 17                 | 10-20             | 33 – 1.6                         |
| warp          | gM (M0III)                            | -1                  | 2           | 10             | 16                 | 10-20             | 20 - 0.9                         |
| Thick disk    | gK (K3III)                            | 0                   | 2           | 8              | 16.5               | 50-60             | 25 - 1.0                         |
|               | HB (A5V)                              | +0.5                | 2           | 8              | 17                 | 50-60             | 39 - 1.5                         |
|               | gK (K3III)                            | 0                   | 2           | 15             | 18                 | 30                | 59 - 4.2                         |
|               | HB (A5V)                              | +0.5                | 2           | 15             | 18.5               | 30                | 100 - 7.1                        |
| Spiral arms   | Cepheids (F8)                         | - 3                 | 5           | 10             | 17                 | 10-20             | 37 - 1.8                         |
|               | SgB (B0I)                             | - 5                 | 5           | 10             | 15                 | 10-20             | 14 - 0.7                         |
|               | SgM (M7III)                           | - 5                 | 5           | 10             | 15                 | 10-20             | 4 - 0.2                          |
| Inner<br>Halo | gK (K3III)<br>HB (A5V)<br>MS-TO (G2V) | - 1<br>+0.5<br>+4.5 | 0<br>0<br>0 | 10<br>10<br>10 | 14<br>15.5<br>19.5 | 100<br>100<br>100 | 8 - 0.4<br>18 - 0.9<br>193 – 9.1 |
| Outer         | gK (K3III)                            | -1                  | 0           | 30             | 16.5               | 100               | 25 – 3.6                         |
|               | HB (A5V)                              | +0.5                | 0           | 30             | 18                 | 100               | 71 - 10                          |

### The disk: open clusters



NGC 2099 - Kalirai et al. 2001





All the MW open clusters will be observed by Gaia

### The distance scale: Galactic RR Lyraes

#### GEOS database photometry:

Mv = 0.52 (~ [Fe/H]=-1.5 dex) V-I=0.50  $\langle V \rangle = (V_{max} + V_{min})/2$ Zero reddening

→ Individual end-of-mission  $\sigma_{\pi}/\pi$  estimates

| n. stars         | $\sigma_{\pi}/\pi$ | D(kpc)     |
|------------------|--------------------|------------|
| ~ 5 % (~ 340)    | ≤ <b>1</b> %       | ≤ <b>2</b> |
| ~ 15 % (~ 1000 ) | ≤ <b>5</b> %       | <b>≤ 4</b> |
| ~ 26 % (~ 1750 ) | ≤ <b>10</b> %      | ≤ <b>6</b> |
| ~ 43 % (~ 2900 ) | ≤ <b>20</b> %      | ≤ <b>8</b> |
| ~ 60 % (~ 4000 ) | ≤ <b>30</b> %      | 10         |

Expected from Gaia ~ 15-40 103 bulge ~ 70 x 10<sup>3</sup> halo > 25 x 10<sup>3</sup> LMC (Eyer & Cuypers, 2000)



### The distance scale: Galactic Cepheids

Only ≤ 1000 Galactic Cepeheids V(mag): 8.4 12.6 13.5 are known - most are located d(kpc): 1.5 4.4 7.5 in the Solar neighbourhood N(%) **DDO** Cepheids 0.8 ~ 400 Galactic Cepheids from David Dunlap Nstar = 4140.6 **Observatory DB** → photometry, reddening, 0.4 distance, magnitude 0.2 Gaia predicted accuracy ≤ 1% for 145 stars (35%) 0.0 ≤ 2% for 290 stars (70%) 0.02 0.04 0.06 0.08 0.1 ≤ 4% for 390 stars (95%)  $\sigma_{\pi}/\pi$ 

Presently, there are only ~ 250 Cepheids with parallax & photometry  $\rightarrow$  ~ 100 with  $\sigma_{\pi} \leq 1$  mas (Hipparcos) - 10 with HST parallax

Estimated MW Cepheids for Gaia: 2-9 x 10<sup>3</sup> (Eyer & Cuypers, 2000; Windmark 2011)

→ direct (trigonometric) calibration of local standard candles for the cosmological distance scale

Fernie et al. (1995)

#### Case 1: globular clusters







Add reddening and contamination by field stars [from a Galactic model: Besançon]

> Simulate the process of Gaia observation [end of mission] including crowding

### **Astrometry: systemic motion**





Case 2: dwarf spheroidal galaxy Draco

 $M_v = -9.0 \quad \mu_{v,0} = 25.0 \text{ mag/arcsec}^2 \quad D = 93 \text{ kpc}$ 

#### 2°×2° CFHT photometry from Segall et al 2007

After statistical decontamination  $\rightarrow$  750 RGB stars with V $\leq$  20



Case 2: dwarf spheroidal galaxy Draco

Simulating Gaia observations of real Draco stars (motions - velocity dispersion)

To each of the 750 Draco member stars observable by Gaia I associate :

- A realistic SYSTEMIC tangential motion (amplitudes from HST estimates)
  - A realistic velocity dispersion (9.1 km/s, assuming isotropy)
    - Observational errors from de Bruijne's model

- To simulate non-perfect knowledge of individual observational errors a Gaussian component of amplitude 10% is added to the error

> For each star observed by Gaia I obtain realistic:

**PMRA ± ePMRA & PMDE ± ePMDE** 

#### Case 2: dwarf spheroidal galaxy Draco

Maximum Likelihood estimate of systemic proper motion and velocity dispersion using a simple gaussian model. In input PMRA ± ePMRA & PMDE ± ePMDE



### Summary - Conclusions

- In the Galaxy Gaia will provide the distances, velocity distributions and APs of all stellar populations to unprecedented accuracy as far as 10 kpc (and beyond), allowing to:
  - > map the spatial and dynamical structure of the MW components
  - identify merger debris, streams etc. (evidence of accretion and/or interaction events), and derive the MW formation and chemical history
  - derive the star formation history throughout the Galaxy
  - obtain the trigonometric calibration of primary distance indicators
    a definitive and robust definition of the cosmic distance scale
- Comparable astrometric accuracy may be achieved by other present (future) space- & ground-based facilities, but on <u>small areas</u> of the sky
- Several surveys (especially the high-resolution spectroscopic ones, see talk by Carlos Allende-Prieto) will be very important: none will provide all-sky coverage, but all will contribute to complement and extend the scientific potential of the Gaia data

# more information on Gaia at http://www.cosmos.esa.int/web/gaia



