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8 1 Introducing Asteroseismology

the string, the tension and the material the string is made of. Importantly,
the tension and composition of the string are uniform along its length. Under
those conditions the first overtone mode has twice the frequency of the fun-
damental mode, the second overtone mode has a frequency three times that
of the fundamental mode, and so on. We therefore refer to these overtones as
“harmonics”, since they have small integer ratios. To our ears the frequencies
with small integer ratios, such as 2:1, 3:2, 4:3, are harmonious. But note that
here we distinguish the words “overtone” and “harmonic”; while they are the
same for modes on a uniform string, they are not the same for stars, as we
shall see.

1.2.2 1-D Oscillations in an Organ Pipe

Fig. 1.2. The first three oscillation modes for an organ pipe with one end (on the
left) closed, and one end (on the right) open. On the left is the fundamental mode;
in the centre is the first overtone which has a single node; and on the right is the
second overtone which has two nodes. Note that the open end is an anti-node in the
displacement of the air, and that the nodes are uniformly spaced.

If instead of a string we think of the oscillations of the air in an organ pipe, or
any wind instrument with one closed end, then there is a displacement node
at the closed end of the pipe, and the other, open end has a displacement
antinode. Figure 1.2 shows this schematically. As for the string in the previous
section, note that the overtones are harmonic with small integer ratios – in the
cases in Fig. 1.2 these are 3:1 and 5:1 – since the air temperature and chemical
composition are uniform within the pipe, so the sound speed is constant along
the pipe. While the organ pipe is in some ways a simple analogue of a radially
pulsating star, the uniform temperature is far from true for stars, as we shall
see, and therein lies a big difference.

1.3 2-D Oscillations in a Drum Head

To imagine the oscillations of a 2-D membrane, a drum head is easy to visu-
alize, as can be seen in Fig. 1.3. Because the drum head is two-dimensional,

analogy to a simple case: oscillations in an organ pipe
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Fig. 3. Fourier amplitude spectra for a sample of red giants observed by CoRoT. Black lines indicate a global model fit, and dotted lines show the
model plotted without the Gaussian component and serve as a model for the background signal. The center of the Gaussian is adopted to be the
frequency of maximum oscillation power, νmax. Error bars indicate the ±1σ uncertainties and diamond symbols correspond to the weighted mean
frequency after correcting for the background signal. Note the different amplitude scales in the different panels. Inserts compare the comb response
functions (grey) and marginal distributions (black) used to determine the large frequency separations.

specifically chose to define ∆ν as the average frequency separa-
tion in the frequency range of the maximum oscillation power.
To identify ∆ν we use again the Bayesian MCMC algorithm
(Gruberbauer et al. 2009). But instead of fitting a global model,
we fit a sequence of equidistant Lorentzian profiles to the power
density spectra

P(ν) = Pn +

2∑

i=−2

a2
i · τ

1 + 4[ν − (ν0 + ∆ν · i/2)]2 · (πτ)2 , (2)

where ai is the rms mode amplitude of the ith profile, ν0 cor-
responds to the frequency of the central mode, ∆ν is the spac-
ing, and τ is the mode lifetime which is assumed to be equal
for all five modes. In principle we do not expect all modes to
have the same lifetime, but this is a marginal assumption which
significantly stabilizes the fit and has very little impact on the de-
termination of ∆ν. The model obviously represents either three
consecutive radial modes with two interjacent dipole modes or
three consecutive dipole modes with interjacent radial modes,
depending on which mode the sequence is centered. In either
case, the fitted spacing corresponds to the large frequency sep-
aration in the frequency range where the maximum oscillation
power is seen. In our analysis the MCMC algorithm is allowed
to vary the central mode frequency within νmax ± σg. ∆ν and the
mode lifetime are sampled between 0.5 µHz and 2σg and 1 and

100 days, respectively. The individual mode amplitudes are al-
lowed to vary between zero and four times the highest amplitude
peak in the spectrum. After half a million iterations the algorithm
delivers probability distributions for all fitted parameters and we
calculate the most probable values and their uncertainties from
their marginal distributions.

The advantage of our method compared to, e.g., the comb-
response function (Kjeldsen et al. 1995) or an autocorrelation
spectrum is that it takes the Lorentzian-like form of the signal
into account and is therefore less sensitive to the stochastic na-
ture of the signal. Examples for the residual power density spec-
tra and the most probable fits are shown in Fig. 4. Interestingly,
the presence of additional modes which are not taken into ac-
count in our model does not influence the fit. This can be seen for
instance from the power density spectrum of star A, where the
MCMC algorithm correctly identifies the l = 0 and 1 modes and
does not consider the additional peaks at about 72 and 79 µHz,
which are most likely l = 2 modes. We compare the marginal
distributions for ∆ν from our MCMC algorithm with the comb-
response functions (both with arbitrary ordinates) in the inserts
of Fig. 3. Although for some stars both methods give consistent
results, the values can differ by more that 0.2 µHz.

We expect this ambiguity to be due to the stochastic nature
of the signal. The observed time series represent a single real-
isation of a damped and stochastically excited signal. Another
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model plotted without the Gaussian component and serve as a model for the background signal. The center of the Gaussian is adopted to be the
frequency of maximum oscillation power, νmax. Error bars indicate the ±1σ uncertainties and diamond symbols correspond to the weighted mean
frequency after correcting for the background signal. Note the different amplitude scales in the different panels. Inserts compare the comb response
functions (grey) and marginal distributions (black) used to determine the large frequency separations.

specifically chose to define ∆ν as the average frequency separa-
tion in the frequency range of the maximum oscillation power.
To identify ∆ν we use again the Bayesian MCMC algorithm
(Gruberbauer et al. 2009). But instead of fitting a global model,
we fit a sequence of equidistant Lorentzian profiles to the power
density spectra

P(ν) = Pn +
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1 + 4[ν − (ν0 + ∆ν · i/2)]2 · (πτ)2 , (2)

where ai is the rms mode amplitude of the ith profile, ν0 cor-
responds to the frequency of the central mode, ∆ν is the spac-
ing, and τ is the mode lifetime which is assumed to be equal
for all five modes. In principle we do not expect all modes to
have the same lifetime, but this is a marginal assumption which
significantly stabilizes the fit and has very little impact on the de-
termination of ∆ν. The model obviously represents either three
consecutive radial modes with two interjacent dipole modes or
three consecutive dipole modes with interjacent radial modes,
depending on which mode the sequence is centered. In either
case, the fitted spacing corresponds to the large frequency sep-
aration in the frequency range where the maximum oscillation
power is seen. In our analysis the MCMC algorithm is allowed
to vary the central mode frequency within νmax ± σg. ∆ν and the
mode lifetime are sampled between 0.5 µHz and 2σg and 1 and

100 days, respectively. The individual mode amplitudes are al-
lowed to vary between zero and four times the highest amplitude
peak in the spectrum. After half a million iterations the algorithm
delivers probability distributions for all fitted parameters and we
calculate the most probable values and their uncertainties from
their marginal distributions.

The advantage of our method compared to, e.g., the comb-
response function (Kjeldsen et al. 1995) or an autocorrelation
spectrum is that it takes the Lorentzian-like form of the signal
into account and is therefore less sensitive to the stochastic na-
ture of the signal. Examples for the residual power density spec-
tra and the most probable fits are shown in Fig. 4. Interestingly,
the presence of additional modes which are not taken into ac-
count in our model does not influence the fit. This can be seen for
instance from the power density spectrum of star A, where the
MCMC algorithm correctly identifies the l = 0 and 1 modes and
does not consider the additional peaks at about 72 and 79 µHz,
which are most likely l = 2 modes. We compare the marginal
distributions for ∆ν from our MCMC algorithm with the comb-
response functions (both with arbitrary ordinates) in the inserts
of Fig. 3. Although for some stars both methods give consistent
results, the values can differ by more that 0.2 µHz.

We expect this ambiguity to be due to the stochastic nature
of the signal. The observed time series represent a single real-
isation of a damped and stochastically excited signal. Another
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Figure 1. CMD of NGC 6791 (left-hand panel) and NGC 6819 (right-hand panel). Photometric data are taken from Stetson, Bruntt & Grundahl (2003) and
Hole et al. (2009), respectively. RGB stars used in this work are marked by open squares and RC stars by open circles. See Section 3.2 for a description of the
target selection.

et al. 1991; Kjeldsen & Bedding 1995; Mosser et al. 2010; Belkacem
et al. 2011), and therefore

νmax ≃ M/M⊙
(R/R⊙)2

√
Teff/Teff,⊙

νmax,⊙ , (2)

where νmax,⊙ = 3100 µHz and Teff,⊙ = 5777 K.
These scaling relations are widely used to estimate masses and

radii of red giants (see e.g. Stello et al. 2008; Kallinger et al. 2010;
Mosser et al. 2010), but they are based on simplifying assumptions
that remain to be independently verified. Recent advances have been
made on providing a theoretical basis for the relation between the
acoustic cut-off frequency and νmax (Belkacem et al. 2011), and
preliminary investigations with stellar models (Stello et al. 2009)
indicate that the scaling relations hold to within ∼3 per cent on the
main sequence and RGB (see also White et al. 2011).

Depending on the observational constraints available, we may
derive mass estimates from equations (1) and (2) alone, or via their
combination with other available information from non-seismic ob-
servations. When no information on distance/luminosity is avail-
able, which is usually the case for field stars, equations (1) and (2)
may be solved to derive M and R (see e.g. Kallinger et al. 2010;
Mosser et al. 2010):

M

M⊙
≃

(
νmax

νmax,⊙

)3 (
"ν

"ν⊙

)−4 (
Teff

Teff,⊙

)3/2

, (3)

R

R⊙
≃

(
νmax

νmax,⊙

) (
"ν

"ν⊙

)−2 (
Teff

Teff,⊙

)1/2

. (4)

In the case of clusters, we can use the distance/luminosities esti-
mated with independent methods (i.e. via isochrone fitting or eclips-
ing binaries) as an additional constraint. Including this information
allows M to be estimated also from equation (1) or equation (2)

alone (see equations 5 and 6, respectively), or in combination lead-
ing to a mass estimate with no explicit dependence on Teff (as in
equation 7):

M

M⊙
≃

(
"ν

"ν⊙

)2 (
L

L⊙

)3/2 (
Teff

Teff,⊙

)−6

, (5)

M

M⊙
≃

(
νmax

νmax,⊙

) (
L

L⊙

) (
Teff

Teff,⊙

)−7/2

, (6)

M

M⊙
≃

(
νmax

νmax,⊙

)12/5 (
"ν

"ν⊙

)−14/5 (
L

L⊙

)3/10

. (7)

In the following sections, we use equations (3)–(7) directly to
estimate M (and R) without adding any extra dependence on stellar
models. As illustrated in detail e.g. by Gai et al. (2011), additional
(so-called ‘grid-based’) methods to estimate M and R can be de-
signed. These procedures are also based on equations (1) and (2)
but, by searching solutions for M and R in grids of evolutionary
tracks, have the advantage of reducing uncertainties on the derived
mass and radius, at the price of some model dependence that we
prefer to avoid in this study.

2.1 Error estimates

The formal uncertainties (σ i) on the masses (Mi) of the stars were
used to compute a weighted average mass for stars belonging to the
RGB and for stars in the RC:

M =
∑N

1 Mi/σ
2
i∑N

1 1/σ 2
i

.

C⃝ 2011 The Authors, MNRAS 419, 2077–2088
Monthly Notices of the Royal Astronomical Society C⃝ 2011 RAS
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1.6 A Pulsation HR Diagram 25

Fig. 1.12. A pulsation HR Diagram showing many classes of pulsating stars for
which asteroseismology is possible.

On the other hand, the shortest relevant time scale is the dynamical time
scale,

τdyn ≃
√

R3

GM
≃
√

1
G ρ

, (1.15)

Aerts, Christensen-Dalsgaard & Kurtz  2009

solar-like oscillating stars



SOLAR-LIKE OSCILLATING STARS:

numerous 

precise distance and age indicators 
span a wide age interval sampling look-back 
times as long as the age of the Galaxy.

photospheric composition proxy 
of the ISM at time of birth
pulsation spectrum rich yet simple 

STANDARD CLOCKS AND RULERS FOR GALACTIC STUDIES 

intrinsically luminous
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pressure modes

oscillation modes in stars: 2 main families

acoustic waves

high frequencies

largely determined 
by sound speed

3.1. BASIC EQUATIONS OF HYDRODYNAMICS 45

By using equation (3.2), we may also write equation (3.8) as

ρ
∂ v
∂t

+ ρv ·∇v = −∇p + ρ f . (3.9)

Among the possible body forces I consider only gravity. Thus in particular I neglect
effects of magnetic fields, which might otherwise provide a body force on the gas. The force
per unit mass from gravity is the gravitational acceleration g, which can be written as the
gradient of the gravitational potential Φ:

g = −∇Φ , (3.10)

where Φ satisfies Poisson’s equation

∇2Φ = 4πGρ . (3.11)

It is often convenient to use also the integral solution to Poisson’s equation

Φ (r, t) = −G
∫

V

ρ(r′, t)dV

|r− r′| . (3.12)

3.1.3 Energy equation

To complete the equations we need a relation between p and ρ. This must take the form of
a thermodynamic relation. Specifically the first law of thermodynamics,

dq

dt
=

dE

dt
+ p

dV

dt
, (3.13)

must be satisfied; here dq/dt is the rate of heat loss or gain, and E the internal energy, per
unit mass. As before V = 1/ρ is specific volume. Thus equation (3.13) expresses the fact
that the heat gain goes partly to change the internal energy, partly into work expanding
or compressing the gas. Alternative formulations of equation (3.13), using the equation of
continuity, are

dq

dt
=

dE

dt
− p

ρ2

dρ
dt

=
dE

dt
+

p

ρ
divv . (3.14)

By using thermodynamic identities the energy equation can be expressed in terms of other,
and more convenient, variables.

dq

dt
=

1
ρ(Γ3 − 1)

(dp

dt
− Γ1p

ρ

dρ
dt

)
(3.15)

= cp

(dT

dt
− Γ2 − 1

Γ2

T

p

dp

dt

)
(3.16)

= cV

[dT

dt
− (Γ3 − 1)

T

ρ

dρ
dt

]
. (3.17)

Here cp and cV are the specific heat per unit mass at constant pressure and volume, and
the adiabatic exponents are defined by

Γ1 =
(
∂ ln p

∂ ln ρ

)

ad
,

Γ2 − 1
Γ2

=
(
∂ lnT

∂ ln p

)

ad
, Γ3 − 1 =

(
∂ lnT

∂ ln ρ

)

ad
. (3.18)c2 = �1

P
⇢
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4.3.1 Equations

For adiabatic oscillations, δq = 0 and equation (4.37) can be written

ρ′ =
ρ

Γ1p
p′ + ρξr

( 1
Γ1p

dp

dr
− 1
ρ

dρ
dr

)
. (4.58)

This may be used to eliminate ρ′ from equations (4.34) – (4.36). From equation (4.34) we
obtain

dξr
dr

= −
(2

r
+

1
Γ1p

dp

dr

)
ξr +

1
ρ

[
l(l + 1)
ω2r2

− 1
c2

]
p′ +

l(l + 1)
ω2r2

Φ′ , (4.59)

where we used that c2 = Γ1p/ρ is the square of the adiabatic sound speed [cf. equation
(3.52)]. It is convenient to introduce the characteristic acoustic frequency Sl by

S2
l =

l(l + 1)c2

r2
= k2

hc
2 . (4.60)

Then equation (4.59) can be written as

dξr
dr

= −
(2

r
+

1
Γ1p

dp

dr

)
ξr +

1
ρc2

(
S2

l

ω2
− 1

)

p′ +
l(l + 1)
ω2r2

Φ′ . (4.61)

Equation (4.35) gives

dp′

dr
= ρ(ω2 − N2)ξr +

1
Γ1p

dp

dr
p′ − ρ

dΦ′

dr
, (4.62)

where, as in equation (3.73), N is the buoyancy frequency, given by

N2 = g
( 1

Γ1p

dp

dr
− 1
ρ

dρ
dr

)
. (4.63)

Finally, equation (4.36) becomes

1
r2

d
dr

(
r2 dΦ′

dr

)
= 4πG

(
p′

c2
+
ρξr
g

N2
)

+
l(l + 1)

r2
Φ′ . (4.64)

Equations (4.61), (4.62) and (4.64) constitute a fourth-order system of ordinary differ-
ential equations for the four dependent variables ξr, p′, Φ′ and dΦ′/dr. Thus it is a complete
set of differential equations.

For radial oscillations equations (4.61) and (4.62), after elimination of the terms in Φ′ by
means of equation (4.53), reduce to a second-order system in ξr and p′; an alternative for-
mulation of this set of equations is obtained from equation (4.57), by setting the right-hand
side to zero. The reduction to second order is a useful simplification from a computational
point of view, and it may be exploited in asymptotic analyses. However, here I shall always
treat radial oscillations in the same way as the nonradial case.

It should be noticed that all coefficients in equations (4.61), (4.62) and (4.64) are real.
Also, as discussed below, the same is true of the boundary conditions. Since the frequency
only appears in the form ω2, we may expect that the solution is such that ω2 is real, in
which case the eigenfunctions may also be chosen to be real. This may be proved to be
true in general. Thus the frequency is either purely real, in which case the motion is an

gravity modes restoring force: buoyancy

low frequencies

propagate in radiative regions

sensitive to near-core conditions

largely determined by
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first order asymptotic approximation
e.g. Vandakurov, 1967,  Tassoul ApJS 43 1980
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oscillates as a function of r, i.e., where K > 0. In regions where K < 0 the
eigenfunction locally increases or decreases exponentially with r. There may be
several oscillatory regions, but typically the amplitude is substantially larger in
one of these than in the rest, defining the region where the mode is said to be
trapped.

The acoustic cut-off frequency is generally large near the stellar surface and
small in the interior. For the low-degree modes relevant here the term in S2

l
in Eq. (2) is small near the surface, and the properties of the oscillations are
determined by the magnitude of ω relative to the atmospheric value of ωac: when
ω is less than ωac the eigenfunction decreases exponentially in the atmosphere,
and the mode is trapped in the stellar interior; otherwise, the mode is strongly
damped by the loss of energy through running waves in the atmosphere.

The properties of the oscillations in the stellar interior are controlled by
the behaviour of Sl and N (see Fig. 1). In unevolved stars N is typically small
compared with the characteristic frequencies of p modes. For these, therefore,
K ≃ (ω2 − S2

l )/c
2 (neglecting ωac), and the modes are trapped in the region

where ω > Sl in the outer parts of the star, with a lower turning point, r = rt,
such that

c(rt)

rt
=

ω
√

l(l + 1)
. (6)

At low degree the cyclic frequencies of p modes approximately satisfy

νnl =
ωnl

2π
≃ ∆ν

(

n+
l

2
+ ϵ

)

− dnl (7)

(Vandakurov et al. 1967; Tassoul 1980; Gough 1993); here n is the radial order
of the mode,

∆ν =

(

2

∫ R

0

dr

c

)−1

(8)

is the inverse sound travel time across a stellar diameter, R being the surface
radius, ϵ is a frequency-dependent phase that reflects the behaviour of ωac near
the stellar surface and dnl is a small correction that in main-sequence stars
predominantly depends on the sound-speed gradient in the stellar core. On the
other hand, g modes have frequencies below N and typically such that ω ≪ Sl
in the relevant part of the star; in this case the modes are trapped in a region
defined by ω < N . Here the oscillation periods satisfy a simple asymptotic
relation:

Πnl =
2π

ωnl
≃ ∆Πl(n+ ϵg) (9)

(Vandakurov et al. 1967; Tassoul 1980), where ϵg is a phase and

∆Πl =
2π2

√

l(l + 1)

(
∫ r2

r1

N
dr

r

)−1

, (10)

the integral being over the region where the modes are trapped.
As discussed in Section 4 (see also Bedding, these proceedings) the situation

is considerably more complicated in evolved stars with a compact core; this leads

�P

⌫nl '
�
n+ l

2 + 1
4 + ↵

�
�⌫

Pnl ' �Pl (n+ ✏)

main hyp: eigenfunction vary much more rapidly than equilibrium structure

BASIC PROPERTIES OF OSCILLATION MODES
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218 3 Theory of Stellar Oscillations

Fig. 3.19. Schematic oscillation spectrum (a) and échelle diagram (b), based
on Eq. (3.223); the parameters, ∆ν0 = 135 µHz, D0 = 1.5 µHz and ϵ0 = 1.4,
were chosen to match approximately the solar values. In panel (a) the am-
plitudes were chosen as the sensitivities of Doppler-velocity observations in
disc-integrated light (cf. Fig. 7.1).

From an observational point of view, and to illustrate its structure, it is
convenient to represent the spectrum by the average quantities ∆ν0 and D0,
with

⟨νn+1 l − νnl⟩nl = ∆ν0 , δνl ≡ ⟨νnl − νn−1 l+2⟩n ≃ (4l + 6)D0 (3.222)

(e.g., Scherrer et al. 1983), such that

νnl ≃ ∆ν0

(
n +

l

2
+ ϵ0

)
− l(l + 1)D0 , (3.223)

⌫̃nl = ⌫ MOD �⌫ = ⌫nl � k�⌫

Echelle diagrams
Aerts, Christensen-Dalsgaard & Kurtz  2009

�⌫



spectra of 1 Msun models form ZAMS to core-He burning 

Ycl=0
l=1
l=2

�⌫02



Ycl=0
l=1
l=2

spectra of 1 Msun models form ZAMS to core-He burning 

�⌫02



Ycl=0
l=1
l=2

spectra of 1 Msun models form ZAMS to core-He burning 



Ycl=0
l=1
l=2

spectra of 1 Msun models form ZAMS to core-He burning 



Ycl=0
l=1
l=2

spectra of 1 Msun models form ZAMS to core-He burning 

ΔP



Ycl=0
l=1
l=2

spectra of 1 Msun models form ZAMS to core-He burning 

ΔP



Ycl=0
l=1
l=2

spectra of 1 Msun models form ZAMS to core-He burning 

ΔP



Yc

spectra of 1 Msun models form ZAMS to core-He burning 

l=0
l=1
l=2

ΔP



Ensemble seismology
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main-sequence and RGB: see e.g. Stello et al. 2009, White et al. 2011
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INDIVIDUAL RADIAL-MODE FREQUENCIES

scaling / grid-based approach:

radial modes frequencies:

REPORT ON THE MODELLING OF KOI1241 3

cannot use it for non-radial modes to predict frequencies / inertiae (used for the
surface correction): the model grid is too coarse wrt the observational uncertainty
of the frequencies.

A viable option would be to fit frequency separations, or interpolate frequencies
of modes between consecutive models, using a physically motivated parametric
description of non-radial mode frequencies. However, this will take longer that
what we can a↵ord for a first paper on KOI1241.
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 l=0

l=1

l=2

Figure 1. Echelle diagram of a model with a low �

2. The g-dominated
modes are very well reproduced by the model. In this model the interaction
of g- and p-dominated l = 2 modes is such that the l = 2 ridge may present
additional detectable peaks.

2. Additional tests run

• Joergen: the model that best fits radial modes has < ⇢ >= 0.0246 g cm�3, plus an
extension to TImW’s work indicates that a 2� 2.5% correction in the �⌫ scaling
may be expected (i.e. assuming the scaling would lead to a mean density ⇠ 4� 5%
smaller).

• Sarbani (by fitting radial modes) confirms this value for the mean density,

From the discussions by email, a reasonable approach would be to consider uncertainties
for the grid-based method, assuming an increased uncertainty in the seismic parameters.

5% offset in the mean density

e.g. Kepler 56 Huber et al. 2013

h⇢i = 0.0234± 0.0003 g cm�3

h⇢i = 0.0246± 0.0002 g cm�3



PERIOD SPACING
Evolutionary state

Bedding et al. 2011, Nature

He-burning

RGB

He-burning

RGB

Mosser  et al. 2011, A&A

Solar-like oscillating stars as standard clocks and rulers for Galactic studies 7
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Fig. 4 Example of probability distribution function of age for a star with M = 0.9 M� and R =
10 R� which is assumed to be either in the red-giant-branch phase (dashed line) or in the core-
He burning phase (solid line). Stellar evolutionary tracks used to determine the age assume that
a significant mass loss occurs following Reimers’ (Reimers, 1975) prescription and a mass-loss
efficiency parameter h = 0.4.

be made between RGB and RC stars (Bedding et al., 2011), and early-AGB stars
(Montalbán & Noels, 2013). Knowledge of the efficiency of mass loss is however
still needed to determine accurate ages of red/clump stars.

Other uncertainties on the input physics may affect main-sequence lifetimes,
hence the age of red giants (see Noels & Bragaglia, this volume). As an example,
consider the impact on RGB ages of uncertainties in predictions of the size of the
central, fully-mixed region in main-sequence stars. We take the example of a model
of mass 1.4M�. The difference between the main-sequence lifetime of a model with
and without overshooting3 from the core is of the order of 20%. However, once the
model reaches the giant phase, this difference is reduced to about 5% (see Fig. 5).
Low-mass models with a larger centrally mixed region experience a significantly
shorter subgiant phase, the reason being that they end the main sequence with an
isothermal helium core which is closer to the Schönberg-Chandrasekar limit (see
Maeder, 1975), hence partially offsetting the impact of a longer main-sequence life-
time. On the other hand, the effect of core overshooting on the age of RGB stars is
more pronounced when the mass of the He core at the end of the main sequence is
close to (or even larger than) the Schönberg-Chandrasekar limit (e.g., see the case
of a 2.0 M� illustrated in Fig. 5). In that case, however, seismology may come to
the rescue as at the beginning of the core-He burning phase the period spacing of
gravity modes is a proxy for the mass of the helium core, and can potentially help to

3 We assume an extension of the overshooting region equal to 0.2Hp, where Hp is the pressure
scale height at the boundary of the convective core, as defined by the Schwarzschild criterion.
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crucial to get robust 
age estimates

0.9 Msun, R=10 Rsun
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testing models of RC stars

improve accuracy of 
model predictions

Bossini et al, submitted
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ASYMPTOTIC APPROXIMATION

deviations from simple asymptotic patterns

�⌫ =
⇣
2
R R
0

dr
c(r)

⌘�1

4 Jørgen Christensen-Dalsgaard

oscillates as a function of r, i.e., where K > 0. In regions where K < 0 the
eigenfunction locally increases or decreases exponentially with r. There may be
several oscillatory regions, but typically the amplitude is substantially larger in
one of these than in the rest, defining the region where the mode is said to be
trapped.

The acoustic cut-off frequency is generally large near the stellar surface and
small in the interior. For the low-degree modes relevant here the term in S2

l
in Eq. (2) is small near the surface, and the properties of the oscillations are
determined by the magnitude of ω relative to the atmospheric value of ωac: when
ω is less than ωac the eigenfunction decreases exponentially in the atmosphere,
and the mode is trapped in the stellar interior; otherwise, the mode is strongly
damped by the loss of energy through running waves in the atmosphere.

The properties of the oscillations in the stellar interior are controlled by
the behaviour of Sl and N (see Fig. 1). In unevolved stars N is typically small
compared with the characteristic frequencies of p modes. For these, therefore,
K ≃ (ω2 − S2

l )/c
2 (neglecting ωac), and the modes are trapped in the region

where ω > Sl in the outer parts of the star, with a lower turning point, r = rt,
such that

c(rt)

rt
=

ω
√

l(l + 1)
. (6)

At low degree the cyclic frequencies of p modes approximately satisfy

νnl =
ωnl

2π
≃ ∆ν

(

n+
l

2
+ ϵ

)

− dnl (7)

(Vandakurov et al. 1967; Tassoul 1980; Gough 1993); here n is the radial order
of the mode,

∆ν =

(

2

∫ R

0

dr

c

)−1

(8)

is the inverse sound travel time across a stellar diameter, R being the surface
radius, ϵ is a frequency-dependent phase that reflects the behaviour of ωac near
the stellar surface and dnl is a small correction that in main-sequence stars
predominantly depends on the sound-speed gradient in the stellar core. On the
other hand, g modes have frequencies below N and typically such that ω ≪ Sl
in the relevant part of the star; in this case the modes are trapped in a region
defined by ω < N . Here the oscillation periods satisfy a simple asymptotic
relation:

Πnl =
2π

ωnl
≃ ∆Πl(n+ ϵg) (9)

(Vandakurov et al. 1967; Tassoul 1980), where ϵg is a phase and

∆Πl =
2π2

√

l(l + 1)

(
∫ r2

r1

N
dr

r

)−1

, (10)

the integral being over the region where the modes are trapped.
As discussed in Section 4 (see also Bedding, these proceedings) the situation

is considerably more complicated in evolved stars with a compact core; this leads

�P

diagnostics of regions of sharp-structure 
variation in the star



quasi-discontinuity in the distribution of an 
equilibrium variable inside the star

oscillatory components in the 
frequencies of oscillation

SIGNATURES OF SHARP-STRUCTURE VARIATIONS

e.g. acoustic glitches in the Sun

�1sharp variations of 
due to helium ionisation

envelope Helium 
abundance

transition from convective 
to radiative transport at the 
base of the convective 
envelope

depth of the 
convective envelope



ACOUSTIC GLITCHES IN STARS

HeII ionisation zone in a red giant: CoRoT data

t(r) =

Z r

0

dr0

c

where

Model  
1.2 Msun

�
1

A. Miglio et al.: Evidence for a sharp structure variation inside a red-giant star
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Fig. 4.Mode inertias of radial modes (full dots), ℓ = 1 modes (asterisks)
and ℓ = 2 modes (open triangles) for a 1.2 M⊙ red-giant model.
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Fig. 5. Open squares represent ∆νn,ℓ computed from ℓ = 0, 1, 2 adia-
batic frequencies in a 1.2 M⊙ red giant model. The solid line shows a
sinusoidal component with amplitude decreasing with frequency (see
Monteiro & Thompson 1998; Houdek & Gough 2007) fitted to the
ℓ = 0, 1 large separation determined by Carrier et al. 2010 (dots with
error bars).

5. Conclusions
In summary, we have shown that the acoustic pulsation modes
detected by CoRoT in the red giant star HR7349 bear the sig-
nature of a sharp-structure variation inside the star. Comparison
with stellar models allows us to interpret this feature as caused
by a local depression of the sound speed occurring in the helium
second-ionization region.

Besides representing the first seismic inference of a local fea-
ture in the internal structure of an evolved low-mass star, this de-
tection allows a mass (M = 1.2+0.6

−0.4 M⊙) and radius (R = 12.2
+2.1
−1.8

R⊙) estimate based solely on seismic constraints. Moreover, for
this nearby star, we could also check that our radius estimate is
compatible with the one based on luminosity and effective tem-
perature (R = 12.2 ± 1.1 R⊙). This additional test reinforces the
proposed interpretation and approach, which could be applied to
the thousands of pulsating giants of unknown distance that are
currently being observed with the space satellites CoRoT (see
Hekker et al. 2009 and, in particular, Fig. 6 in Mosser et al. 2010)
and Kepler (Borucki et al. 2010; Gilliland et al. 2010; Bedding
et al. 2010a). A reliable seismic estimate of the mass and ra-
dius of these stars would represent an essential ingredient for
stellar population studies (Miglio et al. 2009) and for character-
izing planets orbiting around these evolved distant stars (see e.g.
Hatzes & Zechmeister 2007).

We finally recall that the detectability of the signature of He
ionization can potentially lead us to a seismic estimate of the en-
velope helium abundance in old stars. Indeed, as shown for the
Sun and solar-like stars, the amplitude of the periodic component
depends on the envelope helium abundance (see e.g. Basu et al.
2004; Houdek & Gough 2007, and references therein). While
CoRoT and Kepler observations will provide other targets and
further reduce the uncertainty on the oscillation frequencies, a
thorough study on the required precision in terms of seismic and
non-seismic observational constraints, as well as and in terms of
models, should be undertaken to aim for reliable seismic esti-
mate of the envelope helium abundance in giants.
Acknowledgements. JM acknowledges the Belgian Prodex-ESA for support
(contract C90310). FC is a postdoctoral fellow of the Funds for Scientific
Research, Flanders (FWO).

References
Baglin, A., Michel, E., Auvergne, M., & The COROT Team. 2006, in
ESA Special Publication, Vol. 624, Proceedings of SOHO 18/GONG
2006/HELAS I, Beyond the spherical Sun

Ballot, J., Turck-Chièze, S., & Garcı́a, R. A. 2004, A&A, 423, 1051
Basu, S., Mazumdar, A., Antia, H. M., & Demarque, P. 2004, MNRAS, 350, 277
Bedding, T. R., Huber, D., Stello, D., et al. 2010a, ApJ, 713, L176
Bedding, T. R., Kjeldsen, H., Campante, T. L., et al. 2010b, ApJ, 713, 935
Borucki, W. J., Koch, D., Basri, G., et al. 2010, Science, 327, 977
Carrier, F., De Ridder, J., Baudin, F., et al. 2010, A&A, 509, A73
Catelan, M. 2009, Ap&SS, 320, 261
Christensen-Dalsgaard, J. 2002, Reviews of Modern Physics, 74, 1073
Christensen-Dalsgaard, J. 2004, Sol. Phys., 220, 137
De Ridder, J., Barban, C., Baudin, F., et al. 2009, Nature, 459, 398
Dupret, M., Belkacem, K., Samadi, R., et al. 2009, A&A, 506, 57
Dziembowski, W. A., Gough, D. O., Houdek, G., & Sienkiewicz, R. 2001,
MNRAS, 328, 601

Eggenberger, P., Miglio, A., Montalban, J., et al. 2010, A&A, 509, A72
Frandsen, S., Carrier, F., Aerts, C., et al. 2002, A&A, 394, L5
Gilliland, R. L., Brown, T. M., Christensen-Dalsgaard, J., et al. 2010, PASP, 122,
131

Girardi, L. & Salaris, M. 2001, MNRAS, 323, 109
Gough, D. O. 1990, Lecture Notes in Physics, Berlin Springer Verlag, 367, 283
Hatzes, A. P. & Zechmeister, M. 2007, ApJ, 670, L37
Hekker, S., Kallinger, T., Baudin, F., et al. 2009, A&A, 506, 465
Houdek, G. & Gough, D. O. 2007, MNRAS, 375, 861
Kippenhahn, R. & Weigert, A. 1990, Stellar Structure and Evolution (Springer-
Verlag)

Kjeldsen, H. & Bedding, T. R. 1995, A&A, 293, 87
Lee, M. G., Freedman, W. L., & Madore, B. F. 1993, ApJ, 417, 553
Mazumdar, A. 2005, A&A, 441, 1079
Mazumdar, A. & Antia, H. M. 2001, A&A, 377, 192
Miglio, A., Christensen-Dalsgaard, J., di Mauro, M. P., Monteiro, M. J. P. F. G.,
& Thompson, M. J. 2003, in Asteroseismology Across the HR Diagram, ed.
M. J. Thompson, M. S. Cunha, & M. J. P. F. G. Monteiro, 537–540

Miglio, A., Montalbán, J., Baudin, F., et al. 2009, A&A, 503, L21
Monteiro, M. J. P. F. G., Christensen-Dalsgaard, J., & Thompson, M. J. 2000,
MNRAS, 316, 165

Monteiro, M. J. P. F. G. & Thompson, M. J. 1998, in IAU Symposium, Vol. 185,
New Eyes to See Inside the Sun and Stars, ed. F.-L. Deubner, J. Christensen-
Dalsgaard, & D. Kurtz, 317

Mosser, B. & Appourchaux, T. 2009, A&A, 508, 877
Mosser, B., Belkacem, K., Goupil, M.-J., et al. 2010, A&A, in press
Perez Hernandez, F. & Christensen-Dalsgaard, J. 1998, MNRAS, 295, 344
Roxburgh, I. W. & Vorontsov, S. V. 1998, in IAU Symposium, Vol. 185, New
Eyes to See Inside the Sun and Stars, ed. F.-L. Deubner, J. Christensen-
Dalsgaard, & D. Kurtz, 391
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Kepler giants in NGC6819

ACOUSTIC GLITCHES IN GIANTS
Corsaro et al. 2015Broomhall et al. 2014 Vrard et al. 2015

see talk by 
R. Handberg

Kepler



HOV model, Yc ∼ 0.7
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SUMMARY

gentle introduction to asteroseismology
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SUMMARY
why? aiming for precision astrophysics

tension models against asteroseismic constraints              
(e.g. rotation / mixing)

M, R, Age depend on our understanding of stellar physics. 

✔

△

seismic observables depend on the internal structure, 
hence on our (limited) knowledge of stellar physics

!

precise age and mass: easy

but … what about accuracy? what are your needs?

 significant step forward



Hare&hounds 
exercises

asteroSTEP:

Inferring the full, detailed chemodynamical evolution of the Milky Way is a long sought-after goal 
now being made achievable by unprecedented quantities and types of stellar catalogs. However, 
interpretation of these data relies critically on understanding the uncertainties and biases inherent 
to the methods used.  Here, we report on the status of a large collaborative project that aims at 
assessing under which conditions and with which accuracy the properties of a stellar population 
can be recovered, given current state-of-the-art analysis methods.  We seek a comprehensive 
understanding of the impacts of target selection biases and uncertainties on classical 
(spectroscopic, astrometric, photometric) and asteroseismic data.   In this poster, we describe 
how this collaboration is structured into teams and tasks, the generation of mock Milky Way 
catalogs, and progress along other aspects of the project.

GALACTIC ARCHEOLOGY 
WITH CoRoT, Kepler, AND K2: 
HARE&HOUNDS EXERCISES

the asteroSTEP collaboration1

Team A: 
Generating artificial datasets
members: Annie Robin, Sanjib Sharma, Leo Girardi

▪ Generate various sets of artificial data representative   
of populations of giants in the fields of CoRoT and 
Kepler (including the fields of the 2-wheel mission)

▪ Use parametrized models of the Milky Way   
(TRILEGAL, Besancon, Galaxia,…)

▪ The team's output will be artificial observational data   
such as:
▪ seismic data (such as large frequency separation,       

nu_max, and the period spacing),
▪ spectroscopic data (effective temperature, chemical       

abundances, radial velocity),
▪ photometric constraints (apparent magnitudes,       

colours)
▪ astrometric constraints (parallaxes and proper       

motions) as we will obtain them with Gaia

Team B: 
Introducing noise and biases
coordinator: Luca Casagrande

members: Andrea Miglio, Joris De Ridder, Bill 
Chaplin, Gail Zasowski, Rafa Garcia, Rob Farmer, 
Enda Farrell, Berry Holl

▪ Add random (possibly non-gaussian) and   
systematic uncertainties to the "unbiased 
stellar population" generated by Team A.

▪ Add reddening biases  
▪ Add target selection biases  

Team C: 
Retrieving the stellar parameters
members:  Victor Silva Aguirre, Dennis Stello, Thaise 
Rodrigues, Benoit, Mosser, Orlagh Creevey, Maurizio Salaris, 
Santino Cassisi,  Adriano Pietrinferni, Sarbani Basu, Josefina 
Montalban, Aldo Serenelli, Marie Martig, Scilla Degl’Innocenti

▪ Use stellar evolution and pulsation codes to model   
the "observed" stellar properties to estimate their age, 
distance, mass, etc.

▪ Carefully keep record of the assumptions you use,   
such as which opacities you use, mixing length, 
overshoot parameter, etc.

▪ No information from team A will be available.  

Team D: 
Retrieving the galactic parameters
members: Gerry Gilmore, JossBland-Hawthorn, AlejandraRecio-Blanco, IvanMinchev, JoBovy, Borja 
Anguiano, Georges Kordopatis, Friedrich Anders 

▪ Given the stellar properties derived by Team C, recover the global galactic population   
properties that constrain the chemical and dynamical evolution of the galactic disk.

▪ Estimate the age-metallicity and age-velocity dispersion relations as a function of the   
position in the disk. Retrieve possible gradients.

▪ Estimate the initial mass function.  
▪ Estimate the star formation rate as a function of the position in the disk.  

Team E: 
Assessing the different methods and 
codes used
▪ Given the input and output population parameters,   

compare the results of the different groups using 
different methods/codes.

▪ Establish the reliability of the error bars returned by   
team D.

▪ Assess how robust the results are as a function of the   
noise levels.

▪ Make recommendations for an optimized observation   
strategy for the Kepler, CoRoT and APOGEE teams.

1asteroeismology of STElarPopulations aims to foster, and coordinate, 
collaborations between researchers interested in stellar population 
studies using CoRoT, Kepler, and K2 data.  Currently about 90 scientists 
from 16  countries are members of asteroSTEP.
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Inferring the full, detailed chemodynamical evolution of the Milky Way is a long sought-after goal 
now being made achievable by unprecedented quantities and types of stellar catalogs. However, 
interpretation of these data relies critically on understanding the uncertainties and biases inherent 
to the methods used.  Here, we report on the status of a large collaborative project that aims at 
assessing under which conditions and with which accuracy the properties of a stellar population 
can be recovered, given current state-of-the-art analysis methods.  We seek a comprehensive 
understanding of the impacts of target selection biases and uncertainties on classical 
(spectroscopic, astrometric, photometric) and asteroseismic data.   In this poster, we describe 
how this collaboration is structured into teams and tasks, the generation of mock Milky Way 
catalogs, and progress along other aspects of the project.

GALACTIC ARCHEOLOGY 
WITH CoRoT, Kepler, AND K2: 
HARE&HOUNDS EXERCISES

the asteroSTEP collaboration1

Team A: 
Generating artificial datasets
members: Annie Robin, Sanjib Sharma, Leo Girardi

▪ Generate various sets of artificial data representative   
of populations of giants in the fields of CoRoT and 
Kepler (including the fields of the 2-wheel mission)

▪ Use parametrized models of the Milky Way   
(TRILEGAL, Besancon, Galaxia,…)

▪ The team's output will be artificial observational data   
such as:
▪ seismic data (such as large frequency separation,       

nu_max, and the period spacing),
▪ spectroscopic data (effective temperature, chemical       

abundances, radial velocity),
▪ photometric constraints (apparent magnitudes,       

colours)
▪ astrometric constraints (parallaxes and proper       

motions) as we will obtain them with Gaia

Team B: 
Introducing noise and biases
coordinator: Luca Casagrande

members: Andrea Miglio, Joris De Ridder, Bill 
Chaplin, Gail Zasowski, Rafa Garcia, Rob Farmer, 
Enda Farrell, Berry Holl

▪ Add random (possibly non-gaussian) and   
systematic uncertainties to the "unbiased 
stellar population" generated by Team A.

▪ Add reddening biases  
▪ Add target selection biases  

Team C: 
Retrieving the stellar parameters
members:  Victor Silva Aguirre, Dennis Stello, Thaise 
Rodrigues, Benoit, Mosser, Orlagh Creevey, Maurizio Salaris, 
Santino Cassisi,  Adriano Pietrinferni, Sarbani Basu, Josefina 
Montalban, Aldo Serenelli, Marie Martig, Scilla Degl’Innocenti

▪ Use stellar evolution and pulsation codes to model   
the "observed" stellar properties to estimate their age, 
distance, mass, etc.

▪ Carefully keep record of the assumptions you use,   
such as which opacities you use, mixing length, 
overshoot parameter, etc.

▪ No information from team A will be available.  

Team D: 
Retrieving the galactic parameters
members: Gerry Gilmore, JossBland-Hawthorn, AlejandraRecio-Blanco, IvanMinchev, JoBovy, Borja 
Anguiano, Georges Kordopatis, Friedrich Anders 

▪ Given the stellar properties derived by Team C, recover the global galactic population   
properties that constrain the chemical and dynamical evolution of the galactic disk.

▪ Estimate the age-metallicity and age-velocity dispersion relations as a function of the   
position in the disk. Retrieve possible gradients.

▪ Estimate the initial mass function.  
▪ Estimate the star formation rate as a function of the position in the disk.  

Team E: 
Assessing the different methods and 
codes used
▪ Given the input and output population parameters,   

compare the results of the different groups using 
different methods/codes.

▪ Establish the reliability of the error bars returned by   
team D.

▪ Assess how robust the results are as a function of the   
noise levels.

▪ Make recommendations for an optimized observation   
strategy for the Kepler, CoRoT and APOGEE teams.

1asteroeismology of STElarPopulations aims to foster, and coordinate, 
collaborations between researchers interested in stellar population 
studies using CoRoT, Kepler, and K2 data.  Currently about 90 scientists 
from 16  countries are members of asteroSTEP.
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* email address: a.miglio@bham.ac.uk


