UNIVERSITY^{OF} BIRMINGHAM

BASICS OF ASTEROSEISMOLOGY

Andrea Miglio

School of Physics and Astronomy, University of Birmingham, UK

and

STELLAR ASTROPHYSICS CENTRE

University of Aarhus, Denmark

OUTLINE

A Adiabatic perturbations of a static, smooth, spherical star: pressure, gravity, and mixed modes

oscillation spectrum of a 1 M_{sun} star

B seismic observables: going beyond scaling relations

 $\Delta
u$, ΔP

individual mode frequencies

moving away from A: sharp structure variations

C summary & caveats

ASTEROSEISMOLOGY

analogy to a simple case: oscillations in an organ pipe

I-D acoustic wave equation

$$\frac{d^2 P'}{dr^2} + \frac{\sigma^2}{c^2} P' = 0 \qquad c^2 = \gamma_1 \frac{P}{\rho}$$

- boundary conditions
- c uniform

➡

Harmonic frequencies

$$P'(r,t) = A\sin(\sigma t)\cos(\sigma r/c)$$

$$\nu = \frac{\sigma}{2\pi} = (n+1/2)\frac{c}{2R} = (n+1/2)(2t_{\rm ac})^{-1}$$

$$\Delta \nu = \nu_n - \nu_{n-1} = 1/2 \frac{c}{R}$$

SOLAR FREQUENCY SPECTRUM

BiSON data Davies et al. 2014

SOLAR FREQUENCY SPECTRUM

Vmax

$$\nu_{\rm max} \simeq \frac{M/{\rm M}_{\odot}}{(R/{\rm R}_{\odot})^2 \sqrt{T_{\rm eff}/T_{\rm eff},\odot}} \nu_{\rm max,\odot}$$

Brown et al. 1991 Kjeldsen&Bedding 1995 Belkacem et al. 2011

ASTEROSEISMOLOGY

oscillation frequencies Aerts, Christensen-Dalsgaard & Kurtz 2009

 $\log(L/L_{\odot})$

Solar-Like Oscillating Stars: Standard Clocks and Rulers for Galactic Studies

Desirable properties:

- intrinsically luminous
- numerous
 - photospheric composition proxy of the ISM at time of birth
- pulsation spectrum rich yet simple
- precise distance and age indicators
 - span a wide age interval sampling look-back times as long as the age of the Galaxy.

ASTEROSEISMOLOGY

no rotation:

 $\xi \propto \xi_{n\ell}(r) Y_{\ell}^m(\theta,\phi) e^{-i2\pi\nu_{n\ell} t}$

I: number of nodal lines

ASTEROSEISMOLOGY

oscillation modes in stars: 2 main families

pressure modes • acoustic waves

high frequencies

largely determined by sound speed $c^2 = \Gamma_1 \frac{P}{\rho} \qquad \Gamma_1 = \left(\frac{\partial \ln p}{\partial \ln \rho}\right)$

gravity modes

- restoring force: buoyancy
- largely determined by $N^2 = g \left(\frac{1}{\Gamma_1 p} \frac{\mathrm{d}p}{\mathrm{d}r} \frac{1}{\rho} \frac{\mathrm{d}\rho}{\mathrm{d}r} \right)$
- Iow frequencies
- propagate in radiative regions
- sensitive to near-core conditions

BASIC PROPERTIES OF OSCILLATION MODES

first order asymptotic approximation e.g. Vandakurov, 1967, Tassoul ApJS 43 1980

main hyp: eigenfunction vary much more rapidly than equilibrium structure

p-mode frequencies

$$\nu_{nl} \simeq \left(n + \frac{l}{2} + \frac{1}{4} + \alpha\right) \Delta \nu$$

constant frequency spacing

$$\Delta \nu = \left(2 \int_0^R \frac{\mathrm{d}r}{c(r)}\right)^{-1} \propto \left(M/R^3\right)^{1/2}$$

g-mode periods

$$P_{nl} \simeq \Delta P_l \left(n + \epsilon \right)$$

constant period spacing

$$\Delta P = \frac{2\pi^2}{\sqrt{l(l+1)}} \left(\int_{r_1}^{r_2} N \frac{\mathrm{d}r}{r} \right)^{-1}$$

non-radial modes in red-giant stars

UNIVERSITY^{OF} BIRMINGHAM

Echelle diagrams

Ensemble seismology

combine $\Delta \nu$, $\nu_{\rm max}$, $T_{\rm eff}$ \longrightarrow mass, radius

impose that a solution (ν_{max} , $\Delta \nu$, [Fe/H], T_{eff}) belongs to an evolutionary track

consider model-computed $\Delta \nu$

consider period spacing, small frequency separations

model individual frequencies

$\Delta \nu$ scaling

main-sequence and RGB: see e.g. Stello et al. 2009, White et al. 2011

INDIVIDUAL RADIAL-MODE FREQUENCIES

e.g. Kepler 56 Huber et al. 2013

• scaling / grid-based approach: $\langle \rho \rangle = 0.0234 \pm 0.0003 \text{ g cm}^{-3}$

• radial modes frequencies: $\langle \rho \rangle = 0.0246 \pm 0.0002 \text{ g cm}^{-3}$

5% offset in the mean density

PERIOD SPACING

Bedding et al. 2011, Nature

PERIOD SPACING

testing models of RC stars Montalban et al, 2013

improve accuracy of model predictions

Bossini et al, submitted

ASYMPTOTIC APPROXIMATION

deviations from simple asymptotic patterns

$$\Delta \nu = \left(2\int_0^R \frac{\mathrm{d}r}{c(r)}\right)^{-1} \qquad \Delta P = \frac{2\pi^2}{\sqrt{l(l+1)}} \left(\int_{r_1}^{r_2} N \frac{\mathrm{d}r}{r}\right)^{-1}$$

diagnostics of regions of sharp-structure variation in the star

SIGNATURES OF SHARP-STRUCTURE VARIATIONS

quasi-discontinuity in the distribution of an equilibrium variable inside the star

oscillatory components in the frequencies of oscillation

e.g. acoustic glitches in the Sun

sharp variations of Γ_1 due to helium ionisation

envelope Helium abundance

transition from convective to radiative transport at the base of the convective envelope

depth of the convective envelope

ACOUSTIC GLITCHES IN STARS

BCZ and Hell in Sun-like stars e.g. Mazumdar et al. 2014

- Signature of convective cores e.g. Silva Aguirre et al. 2013
- Hell ionisation region in a red giant Miglio et al. 2010

Hell ionisation zone in a red giant: CoRoT data

Miglio et al. 2010

amplitude of the component correlated with Y

ACOUSTIC GLITCHES IN GIANTS

Kepler

Broomhall et al. 2014

Corsaro et al. 2015

Vrard et al. 2015

BUOYANCY GLITCHES IN GIANTS

SUMMARY

gentle introduction to asteroseismology

scaling relations : "entry level seismology"

individual radial-mode frequencies

period spacing in RGB and RC

seismic signatures of glitches in the stellar structure

SUMMARY

why? aiming for precision astrophysics

seismic observables depend on the internal structure, hence on our (limited) knowledge of stellar physics

tension models against asteroseismic constraints (e.g. rotation / mixing)

M, R, Age depend on our understanding of stellar physics.

significant step forward

but ... what about accuracy? what are your needs?

asteroSTEP:

Team A:

such as:

colours)

Team C:

distance, mass, etc.

Team E:

team D

noise levels.

codes used

overshoot parameter, etc.

different methods/codes.

(TRILEGAL, Besancon, Galaxia,...)

abundances, radial velocity),

Hare&hounds exercises

status and next steps: Thu @ 14:00

GALACTIC ARCHEOLOGY WITH CoRoT, Kepler, AND K2: HARE&HOUNDS EXERCISES

andrea miglio*, luca casagrande, joris de ridder, gail zasowski on behalf of

the asteroSTEP collaboration¹

Inferring the full, detailed chemodynamical evolution of the Milky Way is a long sought-after goal now being made achievable by unprecedented quantities and types of stellar catalogs. However, interpretation of these data relies critically on understanding the uncertainties and biases inherent to the methods used. Here, we report on the status of a large collaborative project that aims at assessing under which conditions and with which accuracy the properties of a stellar population can be recovered, given current state-of-the-art analysis methods. We seek a comprehensive understanding of the impacts of target selection biases and uncertainties on classical (spectroscopic, astrometric, photometric) and asteroseismic data. In this poster, we describe how this collaboration is structured into teams and tasks, the generation of mock Milky Way catalogs, and progress along other aspects of the project.

GALACTIC ARCHEOLOGY WITH CoRoT, Kepler, AND K2: HARE&HOUNDS EXERCISES

andrea miglio*, luca casagrande, joris de ridder, gail zasowski on behalf of

the asteroSTEP collaboration¹

Inferring the full, detailed chemodynamical evolution of the Milky Way is a long sought-after goal now being made achievable by unprecedented quantities and types of stellar catalogs. However, interpretation of these data relies critically on understanding the uncertainties and biases inherent to the methods used. Here, we report on the status of a large collaborative project that aims at assessing under which conditions and with which accuracy the properties of a stellar population can be recovered, given current state-of-the-art analysis methods. We seek a comprehensive understanding of the impacts of target selection biases and uncertainties on classical (spectroscopic, astrometric, photometric) and asteroseismic data. In this poster, we describe how this collaboration is structured into teams and tasks, the generation of mock Milky Way catalogs, and progress along other aspects of the project.

Team A:

Generating artificial datasets

members: Annie Robin, Sanjib Sharma, Leo Girardi

- Generate various sets of artificial data representative of populations of giants in the fields of CoRoT and *Kepler* (including the fields of the 2-wheel mission)
- Use parametrized models of the Milky Way (TRILEGAL, Besancon, Galaxia,...)
- The team's output will be artificial observational data such as:
 - seismic data (such as large frequency separation, nu_max, and the period spacing),
 - spectroscopic data (effective temperature, chemical abundances, radial velocity),
 - photometric constraints (apparent magnitudes, colours)

april