Where are we now and where are we going?

Arlette Noels & Josefina Montalbán

Letter

Nature 459, 392-400 (21 May 2009) | doi:10.1038/nature08022; Receiv 26 March 2009

Non-radial oscillation modes with long lifetimes in giant stars

Joris De Ridder¹, Caroline Barban², Frédéric Baudin³, Fabien Carrier¹, Artie P. Hatzes⁴, Saskia Hekker^{5,1}, Thomas Kallinger⁶, Werner W. Weiss⁶, Annie Baglin², Michel Auvergne², Réza Samadi², Pierre Barge⁷

huge number of giants

& Magali Deleuil^Z

Probing populations of red giants in the galactic disk with CoRoT*

A. Miglio^{1,**}, J. Montalbán¹, F. Baudin², P. Eggenberger^{1,3}, A. Noels¹, S. Hekker^{4,5,6}, J. De Ridder⁵, W. Weiss⁷, and A. Baglin⁸

Comparison CoRoT/Trilegal

Red Giants as probes of the structure and evolution of the MW

(A.Miglio J. Montalban, A. Noels) Rome, Nov. 2010

Stellar ev. models

A. Weiss M. Salaris P. Eggenberger S. Cassisi C. Charbonnel A. Palacios Atm. & chemic. abund.

H. Ludwig B. Plez M. Valentini R. Gratton

Seismology

W. Dziembowski B. Mosser Stellar Pop. & Models of MW

L. Girardi K. Freeman C. Chiappini A. Robin

RED GIANTS AS PROBES OF THE STRUCTURE AND EVOLUTION OF THE MILKY WAY

Astrophysics and Space Science Proceedings

Andrea Miglio Josefina Montalbán Arlette Noels *Editors*

Red Giants as Probes of the Structure and Evolution of the Milky Way

35 participants

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS 429, 423-428 (2013)

Galactic archaeology: mapping and dating stellar populations with asteroseismology of red-giant stars

A. Miglio,^{1,2}* C. Chiappini,³ T. Morel,⁴ M. Barbieri,⁵ W. J. Chaplin,¹ L. Girardi,⁶ J. Montalbán,⁴ M. Valentini,⁴ B. Mosser,⁷ F. Baudin,⁸ L. Casagrande,⁹ L. Fossati,¹⁰ V. Silva Aguirre¹¹ and A. Baglin⁷

¹School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT

²Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, CA 93106, USA

³Leibniz-Institut fur Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany

⁴Institut d'Astrophysique et de Géophysique de l'Université de Liège, Allée du 6 Août, 17 B-4000 Liège, Belgium

⁵Dipartimento di Astronomia, Vicolo Osservatorio 3, Universit di Padova, I-35122 Padova, Italy

⁶INAF-Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, I-35122 Padova, Italy

⁷LESIA, CNRS, Observatoire de Paris, Université Pierre et Marie Curie, Université Denis Diderot, F-92195 Meudon cedex, France

⁸Institut d'Astrophysique Spatiale, Univ Paris-Sud, UMR8617, CNRS, Btiment 121, F-91405 Orsay Cedex, France

⁹Research School of Astronomy & Astrophysics, Mount Stromlo Observatory, The Australian National University, ACT 2611, Australia

¹⁰Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D-53121 Bonn, Germany

¹¹Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark

Accepted 2012 November 1. Received 2012 October 31; in original form 2012 October 19

doi:10.1093/mnras/sts345

Andrea Miglio

School of Physics and Astronomy, University of Birmingham Leo Girardi INAF Osservatorio Astronomico di Padova Patrick Eggenberger Geneva Observatory, University of Geneva Josefina Montalban Institut d'Astrophysique, University of Liège

Asteroseismology of stellar populations in the Milky Way

22.07.2013 - 26.07.2013

Haus Sexten - Via Dolomiti 45, 39030, Sexten

Astrophysics and Space Science Proceedings 39

Andrea Miglio Patrick Eggenberger Léo Girardi Josefina Montalbán *Editors*

Asteroseismology of Stellar Populations in the Milky Way

40 participants

592. WE-Heraeus-Seminar – 1st to 5th June 2015

Reconstructing the Milky Way's History: Spectroscopic Surveys, Asteroseismology and Chemodynamical Models

Venue: Physikzentrum Bad Honnef Hauptstraße 5 53604 Bad Honnef (near Bonn, Germany)

70 participants

1. Stellar models and asteroseismology

Age ⇒ 25 %

Age \Rightarrow 15 %

Case	Observed	Adjusted	Fixed
1	$T_{\rm eff}, L, [{\rm Fe/H}]$	A, M, $(Z/X)_0$	$\alpha_{\rm conv}, Y_0$
2a, b, c	$T_{\rm eff}, L, [Fe/H], \langle \Delta \nu \rangle$	A, M, $(Z/X)_0$, $\alpha_{\rm conv}$	Y_0
3	$T_{\rm eff}$, L, [Fe/H], $\langle \Delta \nu \rangle$, $\nu_{\rm max}$	A, M, $(Z/X)_0$, α_{conv} , Y_0	_
4	$T_{\rm eff}, L, [Fe/H], \langle \Delta \nu \rangle, \langle d_{02} \rangle$	A, M, $(Z/X)_0$, α_{conv} , Y_0	_
5	$T_{\text{eff}}, L, [\text{Fe/H}], \langle r_{02} \rangle, \langle rr_{01/10} \rangle$	A, M, $(Z/X)_0$, α_{conv} , Y_0	_
6	T_{eff} , L, [Fe/H], $r_{02}(n)$, $rr_{01/10}(n)$	A, M, $(Z/X)_0$, α_{conv} , Y_0	_
7	$T_{\rm eff}, L, [Fe/H], \nu_{n,\ell}$	A, M, $(Z/X)_0$, α_{conv} , Y_0	_

Set	Input physics	Figure symbol/colour
Α	REF	circle, cyan
В	convection MLT	square, orange
С	AGSS09 mixture	diamond, blue
D	NACRE for ${}^{14}N(p,\gamma){}^{15}O$	small diamond, magenta
Ε	no microscopic diffusion	pentagon, red
F	Kurucz model atmosphere, MLT	bowtie, brown
G	B69 for microscopic diffusion	upwards triangle, chartreuse
H	EoS OPAL01	downwards triangle, purple
Ι	overshooting $\alpha_{ov} = 0.15 H_{\rm P}$	inferior, yellow
J	overshooting $M_{\rm ov,c} = 1.8 \times M_{\rm cc}$	superior, gold
Κ	convective penetration $\xi_{PC} = 1.3H_P$	asterisk, pink

What do we (don't) know for sure about stellar physics ?

- *Rotation* problems with the helioseismic rotation profile
 - problems with the rotation contrast in RG
 - unknown process to transport angular momentum
 - would it be better to ignore rotation ?

Age spread 40 %

- Outer boundary conditions effects still not well understood
 - 3D models can certainly help

Solar models for different atmospheric models adopted to obtain the outer boundary conditions

Figure 1.7: Comparison between 1 M $_{\odot}$ tracks computed adopting the solar calibrated value of α_{ML} as obtained from the adoption of the BH05, CK03, AHF11, and KS66 boundary conditions. The models corresponding to 1 Myr (filled-circle), 5 Myr (filled-triangle), 10 Myr (filled-square) and the position of the Sun (\odot) are also shown.

E. Tognelli, P. G. Prada Moroni, S. Degl'Innocenti, 2011, A&A, 533, A109

Age
$$\Rightarrow$$
 ? %

Semiconvection ?
Rotation
$$\Rightarrow +40\%$$

Diffusion $\Rightarrow -40\%$

Rotation inhibits diffusion
$$\Rightarrow +40\%$$

No rotation \Rightarrow diffusion $\Rightarrow -40\%$ 40%

$$I_{MLT} \Rightarrow 20-30 \%$$

$$Te \Rightarrow ?$$

$$L \Rightarrow ?$$

$$V_{max} \Rightarrow \Delta v/5 (/4, /3 ??)$$

$$20 + 40 + 30 + \dots \Rightarrow \sim 100 \%$$

Calibration of the scaling relation?

First good news : ages of low mass RG are much more robust than ages of low mass dwarfs

Miglio et al. 2011 Miglio et al. 2012

Second good news : There is still work to be done in stellar evolution !

Importance of model comparison

- different codes
- different time steps

• ...

The importance of being cluster'st

A case project for K2?

A case project for PLATO?

A case project for a dedicated new space mission

Stellar population synthesis

- Models ?
- SFR ?
- AMR ?
- Mass distribution
- Radius distribution ?

2. Spectroscopic and photometric surveys

@ RAVE

- o Gaia-ESO
- O APOGEE
- o GALAH
- o Gaia
- @ LAMOST
- ø saga
- 0 4 Most
- O WEAVE

APOKASC COROGEE COROT-GESS

...

Spectroscopic surveys

o challenges:

 one or multi pipelines ? how to manage the procedures and uncertainties computation for both choices

necessity: understand the needs
 from stellar modelers and from
 spectroscopic surveys

What precision do we need on Fe/H, X_i, M, R, age, ... ?

- Stellar models
- Formation & evolution of the galaxy
 - thick disk/thin disk
 - AMR

An uncertainty of 25 % on the age is required from sismo

What is the precision required on Z from spectro surveys ?

Sesto table

Where are we NOW ?

Property	Uncertainty
R	5 %
Μ	10 %
Те	20-70 K (Z $_{\circ}$) ² - >>> at low Z
log g	0.15-0.20 dex ²
L	depends on Π (Gaia), BC ⁴
Y	Y _{∘ ,Helio} = 0.2485 ± 0.0034
Z	$Z_{\circ} = 0.014^{5}$
age	40 % ¹ - 20 % if Z and ev state are known
α _{e-m}	?
α_{MLT}	?

¹ From scaling relations (see A. Miglio, J. Montalban and D. Stello, Sesto proceedings)

² T. Morel, private communication (see also T. Morel, Sesto proceedings)

³ Molenda-Zakowicz et al. 2013, MNRAS 434, 1422

⁴ Bruntt et al. 2010, MNRAS 405, 1907

⁵ M. Asplund et al., see the discussion in Sesto proceedings

« Galactic »table

Property	Uncertainty
R	%
М	%
Те	
log g	dex
L	П (Gaia)
Y	$Y = Y_{\circ,Helio} + ?$
[Fe/H]	[Fe/H] = 0.05 dex
[a/Fe]	[α/Fe] =
« good age »	30 % ?
VR	?

How do we organize ourselves?

0	Corot
0	Kepler
0	K2
0	PLATO

@ RAVE o Gaia-ESO @ APOGEE @ GALAH o Gaia @ LAMOST @ SAGA 0 4 Most O WEAVE

APOKASC COROGEE COROT-GESS

....

CoRoT targets still to be delivered

K2 fields

See you soon!