Hydrodynamical model atmospheres: Their impact on stellar spectroscopy and asteroseismology

Hans-G. Ludwig

ZAH – Landessternwarte, University of Heidelberg, Germany

Overview

- 3D model atmospheres in a nutshell
 - contrasting 3D with situation in standard 1D models
- CO⁵BOLD 3D model grid
- Applications in asteroseismology and spectroscopy? Not exhaustive list but trying to be illustrative
 - work on the percentage level
- Examples from work in progress ...
 - diagnostic potential of the so-called granulation background \rightarrow Ludwig et al. \downarrow
 - microturbulence and collisional cross-sections of neutral hydrogen with oxygen \rightarrow Steffen et al. ↓
 - corrections to theoretical oscillation frequency due to surface effects \rightarrow Sonoi et al. \uparrow
- Leaving out 3D abundance corrections, in particular of molecular species

1D and 3D model atmospheres of late-type stars

Solar Granulation: d3gt57g44n94

Intensity & specific entropy Time= 331.8 min

dlrms: 15.2 %

1D model atmospheres	3D model atmospheres
plane-parallel or spherical symmetry	no assumptions on symmetry
	small representative patch of surface layers
time-independent	time-dependent
CT with mixing-length theory	solution of $M(HD)$ equations
RT with 10^5 frequencies	up-to 25 <mark>frequency bands</mark> (or bins)
radiative-convective equilibrium	follows flow evolution
	quasi-stationary, fluctuations
CPU time $pprox$ 1 min	$10^5 \dots 10^6$ min $ ightarrow$ grids?

... and many more technical details

CO⁵BOLD **3D** model atmosphere grid of non-degenerate objects

(Ludwig, Caffau, Steffen, Freytag, Bonifacio, Kučinskas)

- Filling of parameter space mostly project driven
- In addition: M-dwarfs, AGB giants, brown dwarfs, white dwarfs ...

Granulation background across the Hertzsprung-Russell diagram

3D model provides realization of radiative output of "patch" on the stellar surface

- only horizontal average considered, dependence on limb-angle included: $I_{\rm bol}(t,\mu)$
- Assuming *incoherent action* of (perhaps many) patches \rightarrow stellar radius
 - ok for random granulation pattern, inadequate for oscillatory modes
- Outcome: estimate of power spectrum of observable, global brightness fluctuations

Simulated and observed power spectra

Exponential background model

 $\frac{dP}{d\nu}(\nu) = b \exp\left(-\nu/\nu_{\text{gran}}\right) + \text{sum of Lorentzian box modes}$

- \checkmark characteristic granular frequency $u_{\rm gran}$, frequency-integrated fluctuation $\sigma_{\rm gran}$
- Rather: scaled frequency-integrated fluctuation $\tilde{\sigma}_{\text{gran}} \equiv \frac{R}{R_{\odot}} \sigma_{\text{gran}}$
 - \checkmark stellar radius R not control parameter of the 3D model atmospheres
 - external piece of information, e.g. $R(T_{
 m eff}, \log g, [{
 m M/H}])$ from evolutionary models

The (small) sample of 3D model atmospheres

17 3D models: (ignore size of symbols)

- 9 solar metallicity red cirles
- 8 sub-solar metallicity blue circles ([M/H] = -2)

"Inverse" Hertzsprung-Russell diagram of convective properties

Dependence of brightness fluctuations on gravity well known \rightarrow 8-hour flicker

- Theoretical quantification of T-sensitivity: significant difference with metallicity
- \checkmark Fine structure in the shown fit not significant (yet) ightarrow curvature at $[{
 m M/H}]=0$

Microturbulence and H-collisions – microturbulence?

An abundance analysis of the Hyades giant γ Tauri: an exercise in caution

R.E.M. Griffin¹ and H. Holweger²

¹ Institute of Astronomy, The Observatories, Madingley Road, Cambridge CB3 0HA, England
 ² Institut f
ür Theoretische Physik und Sternwarte der Universit
ät Kiel, Olshausenstrasse 40, D-2300 Kiel, Federal Republic of Germany

Received June 13, accepted October 18, 1988

3.1.2. Microturbulence

This seemingly innocent but potent parameter deserves more respect than it usually gets, as its abuse can produce drastic effects on abundance results.

Microturbulence ξ_{micro}

- In 1D abundance analyses ξ_{micro} is usually considered a "nuisance" parameter
 - influences the strength of strong, saturated lines
 - interpreted as effect of unknown (in 1D!), small-scale atmospheric velocity field
 - also compensates offsets in thermal structure between model and observation
 - ullet usually modelled by a depth-independent Gaussian of fixed width $\xi_{
 m micro}$
 - adjusted to make weak and strong lines provide the same abundance
- Spectroscopic determination of $T_{\rm eff}$, $\log g$, abundances, and $\xi_{
 m micro}$ interrelated
- \checkmark At low spectral resolution or S/N abundance analysis relies on strong lines \rightarrow survey work
- No determination of $\xi_{
 m micro}$ possible, in need of calibration
- \checkmark 3D models predict atmospheric velocity field \rightarrow can provide theoretical guidance
 - Iongish story in itself, exploitation of this feature is worked on
 - observational picture rather messy (line parameters? activity? rotation?)

Another exercise in caution: $\xi_{\rm micro}$ and $S_{\rm H}$

- Departures from local thermodynamic equilibrium (LTE) limits accuracy of spectroscopic abundance determinations – also in cool stars
- Collisions with neutral H-atoms important for establishing of LTE
- Few accurate laboratory measurements or quantum-mechanical calculations available ble
 - standard recipe: approximate Drawin formula times a global scaling factor $S_{\rm H}$
 - \checkmark empirical calibration of $S_{\rm H}$ necessary
- Wording: global means here for all transitions in a particular model atom in the same way
- \blacksquare Here: 1D and 3D calibration of $S_{\rm H}$ for oxygen infrared triplet lines in the Sun
 - \checkmark observation of lines at various limb-angles $\mu = \cos \theta$
 - unique abundance of oxygen assumed
 - ξ_{micro} in 1D model: Gaussian, depth-independent, μ -independent

Center-to-limb variation of O-triplet in 3D-NLTE and 1D-NLTE

• 3D: $S_{\rm H} = 1.2 \dots 1.8$, oxygen abundance $\log \epsilon_{\rm O} = 8.76 \pm 0.02$

ID: no reasonable fit possible $(S_{\rm H} < 0)! \rightarrow \mu$ -independent $\xi_{\rm micro}$ problematic

Stellar models and turbulent pressure

- In standard 1D stellar models convective transport is described by mixing-length theory (MLT)
 - approximate treatment of energy transport by gas flows
- Momentum transport, in particular turbulent pressure is usually ignored
 - in fact local nature of MLT make it difficult to include turbulent pressure
 - naturally included in multi-D hydrodynamical approach
- Effects limited to regions of significant flow speed (Mach numbers) \rightarrow stellar surface
- 🗩 Idea . . .
 - combine interior 1D model with horizontally averaged 3D structure in the outer layers \rightarrow combined or patched model
 - compare combined with standard model to derive changes in mode frequencies
- Correct for "surface effect"

3D model atmospheres and surface effects on mode frequencies

standard (UPM) & combined model (PM)

radius increase

- In 3D, turbulent pressure "lifts" outer layers wrt 1D standard model
- \checkmark Increase of size of resonant cavity, effect pronounced in red giants $(\Delta R/Rpprox 10^{-3})$
- Systematic lowering of mode frequencies
 - frequency change dependent on upper turning point of waves

Examples: frequency changes of radial modes

- Green and dashed blue lines: power law fits to frequency differences as suggested by Kjeldsen et al. (2008)
- Red line: Lorentzian gives better fit
- Hot F-dwarf model B shows effects of acoustic glitch (H-ionization)
- Here 10 models across HRD

Final remarks

- 3D model atmospheres provide ...
 - a natural path to achieve higher accuracy in studies of stellar surface structure
 - \checkmark the possibility to quantify the impact of approximations in 1D
- Exploitation of existing model grids to support survey work ongoing
 - systematic investigation of larger model basis
 - transfer of obtained information into analyses
- Observational tests?
- Where is this needed?

Talking of molecules ...

Molecular line formation and temperature fluctuations

Molecular line formation and C/O ratio

Galactic evolution of oxygen from OH lines in dwarfs

(González Hernández et al. 2010)

- UV-lines of OH in metal-poor dwarf stars last available abundance indicator of O
- Above example record work using 52 3D models to derive abundance corrections
- Downward revision by factor 10 at low metallicity, better consistency with giants
- Fine print: in 3D departures from LTE for Fe and molecules largely unexplored →talk of Lyudmila Machonkina

STAGGER 3D model atmosphere grid

• More metallicities, typically higher resolution \rightarrow talk by Remo Collet

3D model systematics: getting closer – for the Sun

 \blacksquare CO⁵BOLD and STAGGER (Collet et al. 2011) agree within 50 K for $\tau_{500} < 1$

Discrepancies reduced by about factor 2 over recent years

Situation for giants less favorable

- Abundance corrections of molecules in CO⁵BOLD models smaller in magnitude than in Nordlund-Stein/STAGGER models
- Indicative of different T-structure
- Likely related to different approaches in opacity binning scheme

Comparison between 1D and 3D models 3D abundance corrections

- Comparison between 1D and 3D model of the same atmospheric parameters effective temperature, surface gravity, overall metallicity
- ID model has further free parameters, mixing-length parameter, microturbulence \$\xi_{micro}\$ for spectroscopic applications
- Further diagnostics: (3D) model obtained by horizontal and temporal averaging
- 3D abundance corrections ...
 - spectral synthesis of spectral lines of interests in 1D and 3D
 - space-time averaging of 3D spectra
- Solution Strength (total) correction: difference between 3D and 1D abundance for given line strength
 - **Solution** $3D-\langle 3D \rangle$: effects due to horizontal inhomogeneities only
 - **\square** $\langle 3D \rangle$ -1D: effects due to differences in mean structure only

Overshooting beyond Schwarzschild boundary at all metallicies

3D models predict strong overshooting $(v_z^{rms}) \rightarrow micro/macro-turbulence$

T-response to convective overshooting depends on metallicity

In 3D balance between convective cooling and radiative heating

Dependent on atmospheric parameters, in particular metallicity

Temperature fluctuations

Flow dynamics induces temperature fluctuations

GES UVES stars: measured ξ_{micro} vs. recommended calibration

(red points: giants $\log g < 3.5$)

Dispersion does not show obvious correlation with atmospheric parameters??

Predicted line shifts for Gaia's Radial Velocity Spectrometer

Correcting spectroscopic radial velocities to actual stellar space motion

• 3D synthesis of RVS spectral range serious computational effort \rightarrow Ranger@TACC

Microturbulence from 3D models (Steffen et al. 2013)

• CO⁵BOLD 3D model to provide "observation", here mostly [M/H] = 0

- Interpret 3D line strength with help of 1D model
 - resolution of 3D models?
 - mismatch between 1D and 3D model in thermal structure?

Precision limits to 1D analysis: e.g. solar-metallicity F-dwarf

Ideal situation: perfect LTE, line strengths and parameters exactly known

Model of solar metallicity: 1D and (3D) model very similar
T-fluctuations drive differences and significant dispersion

(Klevas 2013, priv. comm.)

(Klevas 2013, priv. comm.)

Departures from LTE 3D, $\langle 3D\rangle \text{, and }1D$

(Steffen 2013, priv. comm.)

⁶Li and ⁷Li in metal-poor halo stars

(Asplund et al. 2006; Smith et al. 1993, 1998; Cayrel et al. 1999; Nissen et al. 1999; chemical evolution models: Prantzos 2006; Ramaty et al. 2000; Fields & Olive 1999; Vangioni-Flam et al. 2000)

- Not corrected for stellar endogenic depletion; arrows indicate 3σ upper limits
- \blacksquare Essentially no 6 Li production during Big Bang; but measured isotopic ratio pprox 0.05

Detections when accounting for 3D and NLTE effects

solid: detections / open: non-detections / left: Asplund et al. 2006 / right: corrected

Seduction from 9 to 2-4 detections out of 24 2σ observations

⁶Li in metal-poor halo stars rather the exception than the rule

3D spectral line formation with the Linfor3D package

- Variations in line strength, width, shift, asymmetry across granulation pattern
- Non-linearities cause net effects in disk-integrated light
- Showledge of detailed line shapes \rightarrow no micro/macro-turbulence