New Satellite Dwarf Galaxies of NGC2683 and M104 and the Search for Satellite Planes

IAUS379: Dynamical Masses of Local Group Galaxies

By Ethan Crosby

PhD student, Australian National University (ANU)

Supervisors: Prof. Helmut Jerjen (ANU) Prof. Mario Mateo (UMich) Dr. Oliver Müller (EPFL)

Satellite Planes Problem: The Ongoing Discussion

Satellite Planes are inconsistent with ACDM

Kroupa et al. 2005	Metz et al. 2009	Ibata et al. 2013 Conn et al. 2013	Tully et al. 2015 Müller et al. 2016	Pawlowski et al. 2020, 2021
Found the satellite plane of the MW	Found co-rotation in the MW plane	Found the satellite plane of M31	Found the satellite plane of Cen A	Gaia/HST motion data confirms the MW and M31 planes
Zenter et al. 2005 Kang et al. 2005	Libeskind et al. 2009 Lovell et al. 2011 	Bahl & Baumgardt 2014 Gillet et al. 2015	Cautun et al. 2015	Sawala et al. 2022

Satellite Planes are <u>consistent</u> with ACDM

Satellite Planes: Search for more.

- Current hypotheses:
 - Local cosmic structures favoured the formation of satellite planes.
 - Our analysis sample is **biased** and exposed to issues including the **'Look-elsewhere' effect**.
 - With limited (only 3) robustly defined satellite planes, the Local universe might be an outlier.

- Next step? Characterise more systems of satellites:
 - Limits bias from the unique characteristics of satellite systems.
 - Allows us to control for the properties of cosmic structures.
 - Builds a sample that is statistically robust.

The Hyper-Suprime Cam Sample

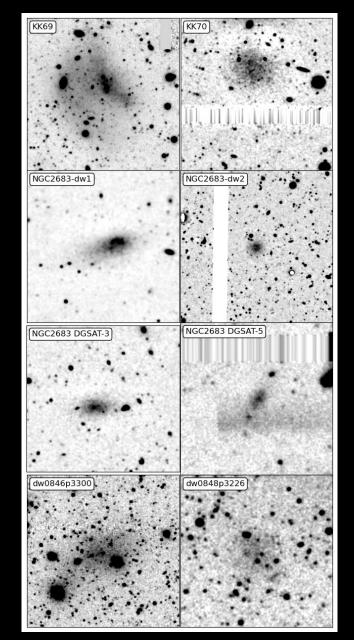
- Wide field images of 8 galaxy environments were captured in January 2019 using the Hyper-Suprime Cam on the 8.2m Subaru telescope, Maunakea, Hawaii.
- These environments reside within the Local Volume, a ~10 Mpc spherical volume
- They were selected to maximise potential satellite dwarf galaxy discoveries.

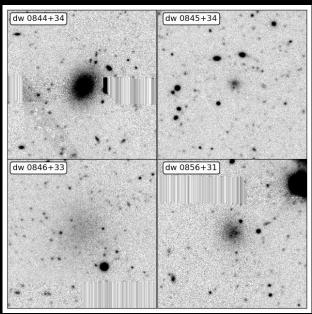
Host Galaxy	Туре	Distance (Mpc)	Stellar Mass [1] $(10^{10} M_{\odot})$
M104	SA(s)a or E	9.55	12.3
M66	SAB(s)b	9.6	6.4
NGC891	SA(s)b	9.12	5.2
M106	SAB(s)bc	7.31	4.7
NGC2903	SAB(rs)bc	9.33	4.6
NGC2683	SA(rs)b	9.36	2.1
NGC3521	SAB(rs)bc	8.03	2.3
UGCA127	Scd	10.60	0.4

Distances and Types extracted from NASA/IPAC Extragalactic Database. Stellar Masses from S4G: [1]: Querejeta, M., et al., THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S4G): PRECISE STELLAR MASS DISTRIBUTIONS FROM AUTOMATED DUST CORRECTION AT 3.6 μ m. 2015, ApJSS, 219, 1, 5

NGC2683

- NGC2683 (the UFO galaxy) is spiral galaxy, about half the diameter of the Milky Way.
- 9.36 Mpc [1] away in the Leo Spur, a spare filamentary structure.

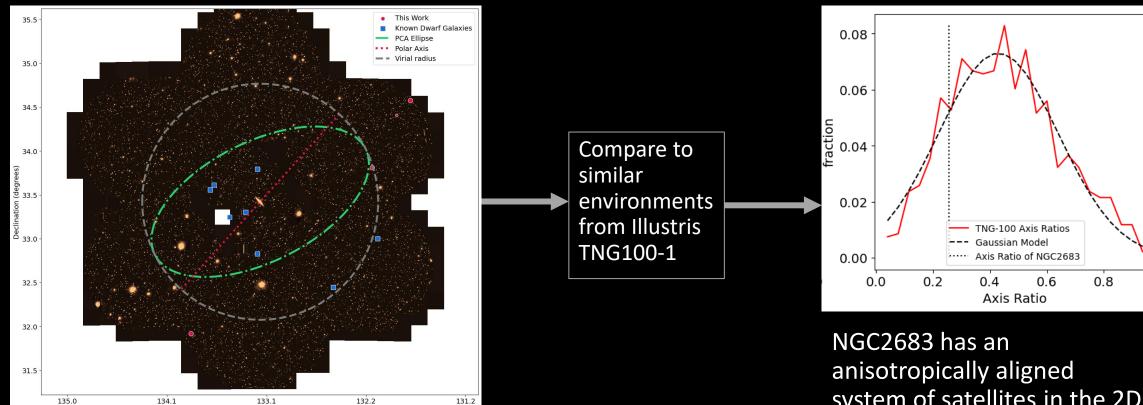



Image Credit: Subaru Telescope (NAOJ), Hubble Space Telescope; Image Assembly Processing, & Copyright: Robert Gendler

[1]: Karachentsev I. D., Tully R. B., Makarova L. N., Makarov D. I., Rizzi L., 2015, ApJ, 805, 144

NGC2683 System

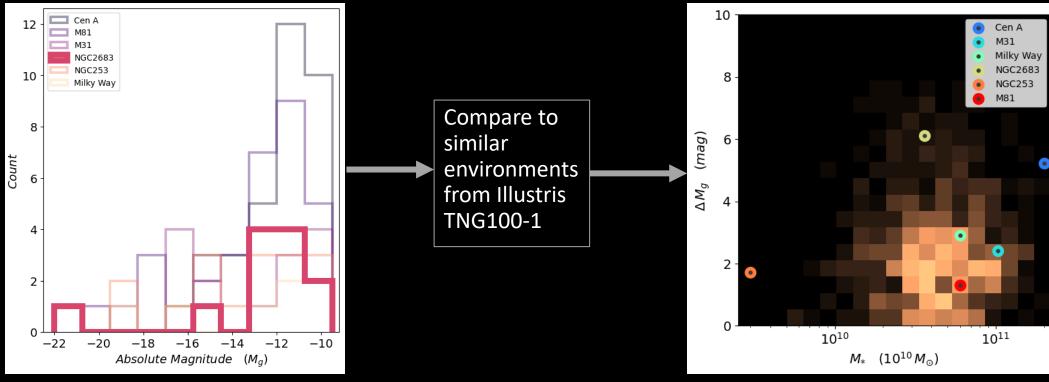
- Each environment is captured with 7 pointings, extending the field of view to ~3-5 degrees, which exceeds the virial radius.
- 8 satellites known, 4 new discoveries.
- Images are complete to $M_g < -10 (m_g < 20)$ $\log(L_{\odot}) > 5.9$ at $r_e > 2''$



Known Satellite candidates from:

- Carlsten S. G., Greene J. E., Beaton R. L., Danieli S., Greco J. P., 2022, ApJ, 933, 47
- Javanmardi B., et al., 2016, A&A, 588, 89
- Karachentsev I. D., Tully R. B., Makarova L. N., Makarov D. I., Rizzi L., 2015, ApJ, 805, 144

NGC2683: 2D Projected Flattening is Consistent with the TNG100 Simulation

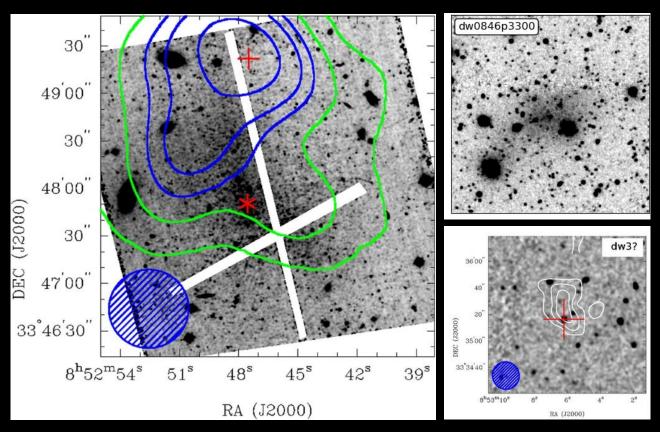


Use PCA in RA, DEC parameter space to generate an ellipse from eigenvectors.

Right-Ascension (degrees)

anisotropically aligned system of satellites in the 2D projection, that is consistent with similar hosts in the TNG-100 simulation.

NGC2683: The Unusual Absence of High Luminosity Satellites


An uncharacteristic magnitude gap of 6 magnitudes.

In comparison to other local host galaxies.

NGC2683 is unusual, with 5% of TNG-100 environments having a larger magnitude gap.

Oddities of the NGC2683 System

- The brightest Satellite (KK69) can be described as an ultradiffuse, dwarf irregular or dwarf transitional galaxy.
- A very low surface brightness and disrupted dwarf.
- An isolated HI cloud.
- Are these galaxies tidal fragments?

Saponara J., et al., New H i observations of KK 69. Is KK 69 a dwarf galaxy in transition?, 2020, Ap&SS, 365, 111

M104

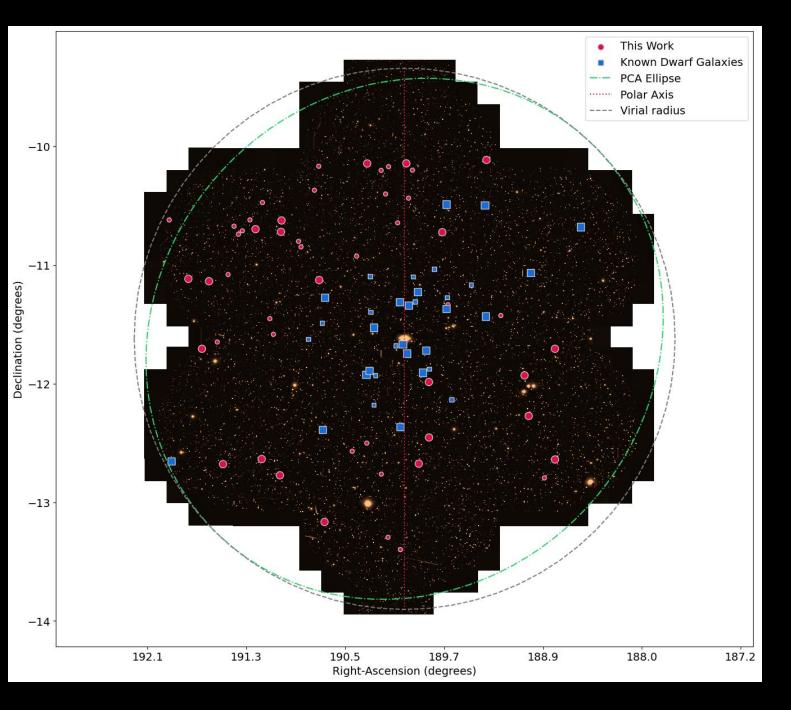
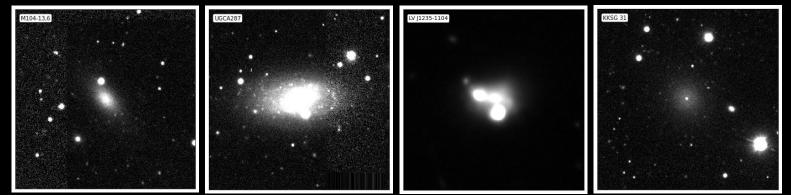

- M104 (the sombrero galaxy) is a massive elliptical galaxy (total mass $M_{\odot} \sim 4 * 10^{12}$)
- Resides 9.55 Mpc [1] in the sparse southern extension of the Virgo cluster.

Image Credit: NASA and the Hubble Heritage Team (STScI/AURA)

M104 System

- 44 new dwarf galaxy candidates with:
 - $M_g < -9.5$ $\log(L_{\odot}) > 5.7$
- No flattening in the satellite distribution is found.
- The distribution is lopsided. This appears to be consistent with simulations.
- A large magnitude gap of about 5 magnitudes.



M104 Spectroscopy

- Integral Field Unit Magellan (IFU-M) is an IFU spectrograph for the Magellan telescopes at the Las Campanas Observatory (LCO).
- We have observed 4 satellites galaxies.
- Spectroscopy can determine co-rotation and constrain the shape of a satellite plane, if present.

Parameter	Value
Spaxel Dimensions	18 x 20
Spaxel pitch (arcsec)	1.9''
Field Dimension (arcsec)	32.7" x 31.4"
Spectral Resolution (LoRes)	1000, 4000
Telescope diameter	6.5m

Conclusion

- The discussions on the reported satellite planes of the Milky Way, Andromeda and Centaurus A are ongoing.
- This motivates a search for satellite planes beyond the Local Group.
- New satellite dwarf galaxy discoveries in the NGC2683 and M104 environments make promising targets for future attempts to quantify the presence of satellite planes.