BEGIN:VCALENDAR VERSION:2.0 PRODID:-//CERN//INDICO//EN BEGIN:VEVENT SUMMARY:Introduction to Machine Learning DTSTART;VALUE=DATE-TIME:20200420T080000Z DTEND;VALUE=DATE-TIME:20200420T160000Z DTSTAMP;VALUE=DATE-TIME:20240704T115515Z UID:indico-event-1@meetings.aip.de DESCRIPTION:• The concepts of Neural Networks and Machine Learning. Weak and Strong AI. Artificial neuron model.\n\n• Typical neural networks wo rkflow: features\, layers\, tensors\, gradients\, loss function\, back pro pagation\n• Types of problems: Regression\, Classification\, Object dete ction\, Segmentation\, Super Resolution\, Image generation\n• The feasib ility of Machine Learning for science and research\n\n• Advantages of Py thon and PyTorch for Neural Networks development\n• Tensor objects in Py thon and PyTorch\, interoperation with NumPy\n• Obtaining tensor gradien ts in PyTorch with Autograd\n• The structure of neural network implement ation in PyTorch: definition\, loss function\, backprop\, weights update\n \n• Our first neural network in PyTorch\, by example of Binary Classific ation\n• Python environments: Linux and Windows\, pip\, Anaconda\, Jupyt er Notebook\n• Training and evaluation of Binary Classification in PyTor ch: “Cat or Dog?”\n\n• PyTorch optimization algorithms in the contex t of neural network training\n• The generic structure of optimization al gorithms: parameters\, optimization step\, funciton evaluation closure\n • The SGD algorithm explained\n• Convolutional neural networks for cla ssification problems\n\n• Deploying LeNet to handwritten digits recognit ion for ZIP codes\n• Deploying Mobilenetv2 imagenet classification\n\nht tps://meetings.aip.de/event/5/sessions/1/ LOCATION:AIP SH/Lecture Hall URL:https://meetings.aip.de/event/5/sessions/1/ END:VEVENT END:VCALENDAR