BEGIN:VCALENDAR VERSION:2.0 PRODID:-//CERN//INDICO//EN BEGIN:VEVENT SUMMARY:Machine Learning on GPUs DTSTART;VALUE=DATE-TIME:20200421T070000Z DTEND;VALUE=DATE-TIME:20200421T150000Z DTSTAMP;VALUE=DATE-TIME:20240704T115516Z UID:indico-event-2@meetings.aip.de DESCRIPTION:An overview of activation function types and their application s: ReLU\, Sigmoid\, Tanh\n• Cross Entropy: efficient loss beyond MSE\n • Softmax - multiclass logistic function\n• Intersection over union me tric\n\n• Using PyTorch datasets to organize the data for batch training \n• Unet structure. Semantic Image segmentation\n\n• An overview of GP U performance in various applications\n• Brief intercomparison of differ ent types of accelerators\n• Key programming principles to achieve high GPU performance in Machine Learning\n• Benchmarking CNNs on different GP Us: cnn-benchmarks test suite\n\n• An overview of GPU-enabled libraries for feature extraction: torchvision.transform\, Pandas\, OpenCV\, CUBLAS\, CUFFT\n\n• Performance limitations of pure Python code\n• Implementin g high-performance C++/Fortran/OpenCL extensions to PyTorch with pybind11\ n\n• Analyzing GPU efficiency for training and inference\, by example of VoiceLoop – a neural text-to-speech processor\n\nhttps://meetings.aip.d e/event/5/sessions/2/ LOCATION:AIP SH/Lecture Hall URL:https://meetings.aip.de/event/5/sessions/2/ END:VEVENT END:VCALENDAR