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Unit conversion to SI:
10kG = 1Tesla

1022Mx = 1014Weber



Introduction

• Many high-resolution observations of sunspots exist, particularly of 
the stable and decaying phase

• Only a few groups attempted radiative magneto-hydrodynamics 
simulations of sunspots

• Rempel (2009, Science, 325, 171) presented a simulation, that looks like 2 
sunspots and has flow directions consistent with observations

• Rempel (2012, ApJ, 750, 62) showed an improved version, standard until today

• Jurčák+ (2020, A&A 638, A28) showed, that the magnetic field distribution of 
simulations and observations are different, particularly at the umbral 
boundary 𝐵ver and inclinations



Motivation: 𝐵ver @ umbral boundary const.

• Jurčák+ (2018, A&A 611, L4) showed that 𝐵ver at the 
umbral boundary is independent of sunspot 
size and traced the umbral boundaries

• Schmassmann+ (2018, A&A 620, A104) showed that 
𝐵ver at the umbral boundary is constant in 
time

Copywrited figure:
Jurčák et al, 2018, A&A 611, L4
Figure 2, bottom panel

Copywrited figure:
Jurčák et al, 2018, A&A 611, L4
Figure 1
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Motivation 2: 
Importance of inclination in the penumbra

• Sobotka+ (2024, A&A 682, A65) showed that the 
inclination difference between penumbral 
grains (PGs) and their surrounding is 
correlated with their movement direction

• Therefore, if little penumbral-type 
convection occurs at inclinations typical for 
the inner penumbra, few PGs have 
inclinations larger than their surroundings 
(class 1), and we miss inward-moving PGs.
Analysis performed on the continuation of 
Rempel2012, 𝛼 = 2. The inset shows 
results from observation for comparison.
Sobotka+ (2024, A&A awaiting reviewer response)

Class 1: 𝛾PG > 𝛾s Class -1: 𝛾PG < 𝛾s



Motivation 3: box height

• Forcing the field to be more horizontal than natural at the top 
boundary (𝛼 = 2) only influences the surface and below, if the 
box ends close to the surface

• Simulations creating flares & CMEs require higher boxes

• Potential or other force-free field top boundary conditions 
required



Methods & boundary conditions

Simulation using MURaM radiative MHD code with default 
settings, in particular:

• Bottom boundary condition: open boundary, symmetric field, 
called OSb in Rempel 2014, ApJ 789, 132, Sec. 2.2

• Potential magnetic field top boundary condition,                       
see Rempel, 2012, ApJ, 750, 62 or Cheung, 2006, PhD thesis 

Non-standard MURaM, fixing internal energy per mass in regions 
with high Alfvén velocity, as used in type I sunspot sim Jurčák+ 2020, A&A, 638, A28



Initial conditions

• Initial conditions, potential field, based on an idea by Nordlund 2015, Nordita 

imposed on small-scale dynamo simulation:

• Varying from



Parameter study

Reducing initial field strength

𝐵0 = 20kG, 40kG, 80kG, 160kG

Subtracting constant vertical offset

𝐵opp =0, 50, 100, 150, 200, 300 G

Increasing width of the box

w = 49 152 km, 98 304 km

Fixing 𝐹Gauss or 𝐹tot = 1022Mx



Parameter study, 𝐵0

Reducing initial field strength

𝐵0 = 20kG, 40kG, 80kG, 160kG

Subtracting constant vertical offset

𝐵opp =0, 50, 100, 150, 200, 300 G

Increasing width of the box

w = 49 152 km, 98 304 km

Fixing 𝐹Gauss or 𝐹tot = 1022Mx

𝐵0 < 160 kG 

results in too narrow a penumbra



Parameter study, increasing 𝐹Gauss

Reducing initial field strength

𝐵0 = 20kG, 40kG, 80kG, 160kG

Subtracting constant vertical offset

𝐵opp =0, 50, 100, 150, 200, 300 G

Increasing width of the box

w = 49 152 km, 98 304 km

Fixing 𝐹Gauss or 𝐹tot = 1022Mx

𝐹Gauss > 1022Mx

results in too strong fields in the umbra



Parameter study, decreasing 𝐹tot

Reducing initial field strength

𝐵0 = 20kG, 40kG, 80kG, 160kG

Subtracting constant vertical offset

𝐵opp =0, 50, 100, 150, 200, 300 G

Increasing width of the box

w = 49 152 km, 98 304 km

Fixing 𝐹Gauss or 𝐹tot = 1022Mx

Changing 𝐵opp with 𝐹Gauss = 1022Mx 
changes little within the spot, but 
dominates outside



Radial velocities

simulation:

• Inside the umbra, flows are slow 
and often associated with waves

• The penumbral filament heads at 
the umbral boundary show in- and 
down-flows

• This is more consistent with 
observations of penumbra 
formation than with stable 
sunspots                                       
a García-Rivas+ (2024, A&A, 686, A112)

• Also, flux within the spot increases 
0.59 → 0.65 · 1022Mx in 3h → 4h



Ongoing flux emergence

Simulation: 
𝐵0 = 160kG, 𝐵opp = 0G, 𝐹Gauss = 𝐹tot = 1022Mx,𝑤 = 49 152 km

Open video: Iout_vel2_flux_1432x1080_h265_crf29.mp4

• very dynamic initial phase

• ongoing flux emergence afterward

• When flux emergence stops, the penumbra gets narrower.

• supporting relation to forming penumbrae

Iout_vel2_flux_1432x1080_h265_crf29.mp4


Conclusions

• Using the potential field approach, 𝐵0 = 160kG and        
FGauss = 1022Mx, it is possible to create sunspot simulations

• Subtracting a uniform vertical field 𝐵opp has little influence on 
the spot itself, but allows to control 𝐵ver outside the spot

• The gas flows in the penumbral filaments of such simulations 
are more consistent with a forming penumbra, than with a 
stable sunspot

• Such simulations show ongoing flux emergence
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Thank you for your attention

• Questions? 

• Anyone interested in sunspot simulation data?             

schmassmann@leibniz-kis.de

And thanks for the funding and access to computing time to 

• GAČR-DFG Project Unveiling the principles of solar magneto-convection

• SOLARNET Trans-national Access Program, funded by the EU under grant number 824135



Video downloads

Choose the video file based on screen size, 
preferentially 1432x1080 pixel

*.mp4 if the player can handle it
*.mov for QuickTime and other dumb players


