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Multiphase	gas	dynamics	crucial	to	model	galactic	ecosystems!



The	multiscale	CGM
also:	

Rauch	et	al.	(1999)	
Rigby	et	al.	(2002)	
Shaye	et	al.	(2007)	
Lau	et	al.	(2015)	

Crighton	et	al.	(2015)	
Chen	et	al.	(2023)	

…

Photoionization	modelling

d	~	NHI	/	nHI	≲100pc

Lan	et	al.	(2017)



The	multiscale	CGM
also:	

Rauch	et	al.	(1999)	
Rigby	et	al.	(2002)	
Shaye	et	al.	(2007)	
Lau	et	al.	(2015)	

Crighton	et	al.	(2015)	
Chen	et	al.	(2023)	

…

Photoionization	modelling

d	~	NHI	/	nHI	≲100pc

Morrison	et	al.	(2024) with	Matthew	Pieri

Lan	et	al.	(2017)



The	multiscale	CGM
also:	

Rauch	et	al.	(1999)	
Rigby	et	al.	(2002)	
Shaye	et	al.	(2007)	
Lau	et	al.	(2015)	

Crighton	et	al.	(2015)	
Chen	et	al.	(2023)	

…

Photoionization	modelling

d	~	NHI	/	nHI	≲100pc

Kinematic	information

Churchill	et	al.	
(2003)

also:	
Rudie	et	al.	(2018)	
Churchill	et	al.	

(2020)	
…

Morrison	et	al.	(2024) with	Matthew	Pieri

Lan	et	al.	(2017)



The	multiscale	CGM
also:	

Rauch	et	al.	(1999)	
Rigby	et	al.	(2002)	
Shaye	et	al.	(2007)	
Lau	et	al.	(2015)	

Crighton	et	al.	(2015)	
Chen	et	al.	(2023)	

…

Photoionization	modelling

d	~	NHI	/	nHI	≲100pc Xu	et	al.	(2023)

Lopez	et	al.	(2025)

Direct	imaging	of	nearby	winds

e.g.,	see	reviews	by	Veilleux	et	al.	(2005,2020)

Kinematic	information

Churchill	et	al.	
(2003)

also:	
Rudie	et	al.	(2018)	
Churchill	et	al.	

(2020)	
…

Morrison	et	al.	(2024) with	Matthew	Pieri

Lan	et	al.	(2017)



Milky	Way	observations

Richter	(2025)

The	multiscale	CGM
also:	

Rauch	et	al.	(1999)	
Rigby	et	al.	(2002)	
Shaye	et	al.	(2007)	
Lau	et	al.	(2015)	

Crighton	et	al.	(2015)	
Chen	et	al.	(2023)	

…

Photoionization	modelling

d	~	NHI	/	nHI	≲100pc Xu	et	al.	(2023)

Lopez	et	al.	(2025)

Direct	imaging	of	nearby	winds

e.g.,	see	reviews	by	Veilleux	et	al.	(2005,2020)

Kinematic	information

Churchill	et	al.	
(2003)

also:	
Rudie	et	al.	(2018)	
Churchill	et	al.	

(2020)	
…

Morrison	et	al.	(2024) with	Matthew	Pieri

Lan	et	al.	(2017)



Challenge	for	large	scale	simulations

Hummels	et	al.	(2019)

Faucher-Giguère	et	al.	(2016)

van	de	Voort	et	al.	(2018)

see	also,	Peeples	et	al.	(2018),	Suaresh	et	al.	(2018),	Nelson	et	al.	(2020),	…



Challenge	for	large	scale	simulations

Hummels	et	al.	(2019)

Faucher-Giguère	et	al.	(2016)

Affecting:	
‣ CGM	observables	(QSO	absorption	lines,	Lyα	halos,	…)		
‣ wind	/	fountain	flow	observables	(how	are	the	phases	
coupled?)	

‣ impact	of	winds	energetically	and	content	(dust,	PAHs,	
…)	

‣ fuel	for	future	star-formation	
‣ impact	on	cosmological	environment	(LyC	escape,	…)	
‣ …

van	de	Voort	et	al.	(2018)

see	also,	Peeples	et	al.	(2018),	Suaresh	et	al.	(2018),	Nelson	et	al.	(2020),	…



Challenge	for	large	scale	simulations

Hummels	et	al.	(2019)

Faucher-Giguère	et	al.	(2016)

Affecting:	
‣ CGM	observables	(QSO	absorption	lines,	Lyα	halos,	…)		
‣ wind	/	fountain	flow	observables	(how	are	the	phases	
coupled?)	

‣ impact	of	winds	energetically	and	content	(dust,	PAHs,	
…)	

‣ fuel	for	future	star-formation	
‣ impact	on	cosmological	environment	(LyC	escape,	…)	
‣ …

van	de	Voort	et	al.	(2018)

see	also,	Peeples	et	al.	(2018),	Suaresh	et	al.	(2018),	Nelson	et	al.	(2020),	…



Go	subgrid?

Solutions	in	computational	astrophysics:	
(1) adaptive	techniques	(SPH,	AMR,	…)	
(2)subgrid	models	(feedback,	star-

formation,	…)



Go	subgrid?

Solutions	in	computational	astrophysics:	
(1) adaptive	techniques	(SPH,	AMR,	…)	
(2)subgrid	models	(feedback,	star-

formation,	…)

Tu
m
lin

so
n	
et
	a
l.	
(2
01

7)

Add	feedback	&	
star-formation:	
fudge	here



Go	subgrid?

Solutions	in	computational	astrophysics:	
(1) adaptive	techniques	(SPH,	AMR,	…)	
(2)subgrid	models	(feedback,	star-

formation,	…)

Tu
m
lin

so
n	
et
	a
l.	
(2
01

7)

Add	feedback	&	
star-formation:	
fudge	here

Add	multiphase	
subgrid	model:	
fudge	here



Go	subgrid?

Solutions	in	computational	astrophysics:	
(1) adaptive	techniques	(SPH,	AMR,	…)	
(2)subgrid	models	(feedback,	star-

formation,	…)

Tu
m
lin

so
n	
et
	a
l.	
(2
01

7)

Add	feedback	&	
star-formation:	
fudge	here

Add	multiphase	
subgrid	model:	
fudge	here

With	four	parameters	I	can	fit	an	
elephant,	and	with	five	I	can	make	

him	wiggle	his	trunk.	
-	John	von	Neumann
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This	talk.

(see	Hitesh’s	talk	tomorrow)

(see	Rainer’s	talk	(?)	and	posters)
Our	take:
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Towards	a	realistic	ISM
Cold	clouds	are	not	spherical!

Fernando	Hidalgo-Pineda

Resolving	the	relevant	length-scales	becomes	(computationally)	challenging!	
→AthenaPK

How	does	 	relate	to	a	(scale	free)	ISM	morphology?rcrit

How	is	the	ISM	morphology	imprinted	in	the	winds?

In	what	way	are	the	phases	kinematically	coupled?

Visit	his	poster!
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A	cold	cloud	in	an	expanding	(CC85	like)	wind
Galactic	winds	are	not	uniform!

Alankar	Dutta

Mass	transfer	between	the	phases	 ·mhot→cold ∼ Aclρhotvmix

cloud’s	surface	area
mixing	&	cooling	physics

ρhot ∝ d−2

P ∝ d−10/3 ⇒ Acl ∝ d???

vmix ∝ ???

Can	a	cold	cloud	survive	in	a	CC85	wind? Visit	his	poster!
Dutta,	Sharma,	MG	(2025)
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Does	a	turbulent	wind	hinder	“tail	formation”	and,	thus,	cold	gas	survival?

Galactic	winds	are	not	laminar!

Fischer	et	al.	(2024)

Ritali	Ghosh

What	is	the	morphology	of	the	cold	gas	(“long	tails”)?

Observational	signatures	of	turbulence	in	winds?

Visit	her	poster!
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The	evil	powers	of	viscosity
Tirso	Marin-Gilabert,	MG,	Oh	(2025)Viscosity…prevents	mixing!
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…but	not	cooling? (no	fixed	u’-Q	relation	as	before)

(Roediger	et	al.	2013)
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transfer	rates	are	not	
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