Simulating the interstellar medium with cosmic rays

Lucia Armillotta

INAF - Arcetri Astrophysical Observatory

Collaborators: Eve Ostriker, Chang-Goo Kim, Nora Linzer, Ronan Hix, Yan-Fei Jiang

The role of feedback in galaxy formation: from small-scale winds to large-scale outflows

Potsdam, 15/07/2024

Galactic cosmic rays

- High-energy non-thermal particles mostly accelerated at supernova shocks
- Mostly composed of protons
- Average kinetic energy ~ 1-10 GeV
- Small number density $\sim 10^{-9} \, \text{cm}^3$
- Energy density ~ 1 eV/cm³ in equipartition with thermal, kinetic and magnetic energy densities in the ISM → CRs may play a significant role in regulating the ISM dynamics

From Ruszkowski & Pfrommer 2023

Cosmic-ray transport: from microscopic to macroscopic scales

- CRs scatter off gyro-radius scale magnetic fluctuations
- Frequent scattering makes the CR mean free path very small → CRs are treated as a relativistic fluid in MHD studies of ISM/galaxies
- Self-confinement scenario for CR scattering: GeV CRs protons mostly scatter off self-excited Alfvèn waves
- CR-fluid transport:
 - Advection by background gas at v
 - Streaming with the confining waves at v_A
 - **Diffusion** relative to waves at rate κ in case of effective wave damping
- Magnetic field mediates **transfer of momentum between CRs and** thermal **gas** at a rate $\propto \nabla P_{\rm c}$, while wave damping causes transfer of CR energy to the gas at a rate $\propto v_{\rm A} \cdot \nabla P_{\rm c}$

Cosmic-ray feedback in galaxies: state of the art

COSMO See Mateusz Ruszkowski's talk **GLOBAL** From Pfrommer & Ruszkowski 2023 ZOOM ENZO 50 x 50 KPC ENZO **GIZMO** FLASH PIERNIK FLASH

Central topic in recent studies of galaxy evolution, explored through MHD simulations of cosmological zoom-ins, isolated galaxies, and local patches of the ISM

Uhlig et al. 2012; Booth et al. 2013; Hanasz et al. 2013; Salem & Bryan 2014; Pakmor et al. 2016; Salem et al. 2016; Simpson et al. 2016; Ruszkowski et al. 2017; Farber et al. 2018; Girichidis et al. 2018, 2022; Armillotta et al. 2021, 2022, 2024; Hopkins et al. 2021, 2022; Rathjen et al. 2021, 2023; Chan et al. 2022; Peschken et al. 2023; Thomas et al. 2023, 2025; Tsung et al. 2023; Sike et al. 2025, Habegger & Zweibel 2025; and more (see reviews by Pfrommer & Ruszkowski 2023)

Cosmic-ray feedback in galaxies: state of the art

- CRs can regulate star formation, depending on galactic environment and conditions
- CRs launch cooler, denser, slower winds than thermal feedback
- BUT... the degree of CR impact depends strongly on how their transport is modelled

CR-MHD TIGRESS SIMULATIONS OF A KPC-SCALE PATCH OF DISK

Kim, Armillotta, et al., in prep.

Constant scattering coefficient $\sigma = \kappa^{-1}$ ($\sigma = 10^{-27}, 10^{-28}, 10^{-29} \, \text{s cm}^{-2}$), $v_{\rm A} = B/\sqrt{4\pi\rho}$

- CRs affect the ISM dynamics by exerting pressure gradient forces
- Different scattering coefficients →
 different CR distributions → different
 CR forces

Towards a more physical transport prescription

• Scattering coefficient computed by balancing wave growth and nonlinear Landau + ion-neutral damping

$$\Gamma_{\rm growth} = \Gamma_{\rm damp} \to \sigma_{\parallel}$$

•
$$v_{\rm S} = v_{\rm A,i} = B/\sqrt{4\pi\rho_{\rm i}}$$

Armillotta, et al.
2021;
Hopkins et al. 2021,
2022;
Thomas et al. 2023,
2025;
Sike et al. 2025

Why accurate CR transport and ISM modelling matters?

SIMPLE ANALYTIC MODEL

Armillotta et al. 2025, Hix, Armillotta et al. sub.

• CRs are confined within the neutral midplane by the surrounding ionized gas → accurate ISM modelling is crucial!

•
$$P_{\text{c,mid}} = \frac{F_{\text{in}}}{4v_{\text{eff}} + 3/2\Lambda_{\text{coll}}N_{\text{H}}} \simeq \frac{\epsilon_{\text{c}}E_{\text{SN}}\Sigma_{\text{SFR}}/m_{*}}{4v_{\text{eff}} + 3/2\Lambda_{\text{coll}}N_{\text{H}}}$$

• $v_{\text{eff}} = v + v_{\text{s}} + \kappa/H_{\text{c}}$ with $H_{\text{c}}[v + v_{\text{s}}, d(v + v_{\text{s}})/dz, \kappa]$ the scale height

What sets $v_{\rm eff}$?

Impact on disk support and star formation rate

Kim, Armillotta, et al., in prep.

100

200

 $t [\mathrm{Myr}]$

300

400

500

0.000

- Only marginal star formation reduction
- CRs spread in the disk via advection + field-aligned transport
- → lateral CR forces are negligible, not just vertical forces

Impact on ISM structure

- Warm gas dominates the extraplanar region (both mass and volume) in all models
- Constant-σ models: more cold-warm gas in both the midplane and extraplanar region
- Constant- σ models: Reduced SF \rightarrow weaker thermal feedback \rightarrow less hot gas

- With CRs: Warm gas dominates the outflow
 → Self-consistent model: 75% WNM / 25%
 HIM at 2 kpc
- Without CRs: Hot gas dominates
 - → Pure MHD model: 35% WNM / 65% HIM

Kim, Armillotta, et al., in prep.

Impact on outflow loading factors

- MHD model: alternating outflows and inflows
- CR-MHD self-consistent model: Steady warm-cold outflows; warm flux remains constant; hot flux gradually decreases with height.
- CRs efficiently accelerate warm gas because the effective sound speed increases as density decreases $(C_{\rm c}^2 \propto P_{\rm c}/\rho \propto v_{\rm A}^{4/3}/\rho \propto \rho^{1/3})$

See also talks by Mateusz Ruszkowski and Timon Thomas

Kim, Armillotta, et al., in prep.

Open questions

1) IMPROVING MICROPHYSICS SUBGRID RECIPES

 What about other wave damping mechanisms (turbulent, linear Landau, dust)? And extrinsic turbulence? → Controlled experiments with different mechanisms

2) COMPARISONS WITH DATA TO VALIDATE MODELS

- Simulations with spectrally-resolved CRs →
 does the standard self-confinement theory reproduce the
 observed spectra?
 - FIRE zoom-in simulations: NO (Hopkins et al. 2022; see also Kempski & Quataert 2023)
 - TIGRESS local-box simulations: YES (Armilotta et al. 2025, Linzer et al. 2025)
- Need for synthetic maps of non-thermal emission

See talks by Karen Yiang, Maria Werhahn, and Philipp Girichidis

Open questions

3) EXPLORING CR TRANSPORT AND IMPACT ACROSS A RANGE OF GALACTIC ENVIRONMENTS

• Higher density, more star-forming environments are characterised by faster outflows → lower CR pressure

 $(P_{\rm c,mid} \propto v_{\rm eff}^{-1})$ and lower CR vertical forces?

- CRs experience stronger collisional losses in denser environments? \rightarrow lower $P_{\rm c,mid} \propto \Lambda^{-1}$?
- What about the scattering rate?
- Importance of global models

SILCC simulations (Rathjen et al. 2023)

Open questions

3) LOW-ENERGY MEV CRS

- Crucial source of ionisation and heating of the ISM
 - → How do CRs shape the thermal state of the ISM and local star formation?
- In low-metallicity environments, photoelectric heating falls below CR heating \rightarrow recent local box simulations show importance of $P_{\rm c}$ -dependent and $N_{\rm H}$ -dependent heating rates for proper star formation modelling
- Importance of simulations with spectrally-resolved CRs

See Philipp Girichidis's talk

Final summary

- **Resolving** the multiphase structure of **the ISM is crucial for** properly **modeling CR** transport: their propagation is different in different thermal phases of the gas
- Realistic models of CR transport predicts that in Milky Way-like environments:
 - CRs marginally contribute to disk support against gravity and star formation regulation
 - CRs generate warm-cold steady outflows

• Open questions & future directions:

- Improving microphysics subgrid recipes
- Comparisons with observational data to validate models
- Systematic investigation of CR transport and impact across varying galactic environments
- Modelling low-energy CRs in MHD simulations of the ISM