Cosmic rays — different species across the spectrum

Philipp Girichidis Institute for theoretical astrophysics (ITA) Centre for Astrophysics (ZAH) University of Heidelberg, Germany

18th Thinkshop Potsdam AIP Potsdam July 16, 2025

Cosmic ray facts

- no rays, but high energy particles $(p, e^+, e^-, \alpha \dots)$
- Iow-E CRs (Padovani+2020)
 Large cross section with gas, strong losses
 heating of dense star forming regions
- **GeV CRs** (Ferriere 2001, Ruszkowski & Pfrommer 2023) Most of energy (weak losses) **Dynamically relevant** via pressure: similar E-densities: $e_{\rm cr} \sim e_{\rm kin} \sim e_{\rm therm} \sim e_{\rm mag}$
- high-E CRs (Kotera&Olinto 2011) Low integrated energy galactic ($E \leq 10^{15} \,\mathrm{eV}$, SNe), "knee" extragalactic ($E \gtrsim 10^{15} \,\mathrm{eV}$, AGN) important as observational diagnostics

Different setups, similar conclusion

Hanasz+ 2003, Girichidis+ 2016,2018, Simpson+ 2016, Dubois+ 2016, Farber+ 2018, Armillotta+ 18,21,23 *Commercon*+ 2019, *Butsky*+ 2020, Rathjen+ 2021,2022, Armillotta+ 2024,2025, Sike+ 2024

Booth+ 2013, Ruszkowski+ 2017a, *Pakmor*+ 2016, *Pfrommer*+ 2017, Jacob+ 2018, Dashyan+ 2020, Semenov+ 2021, Girichidis+ 2022/24, Thomas+ 2021,2023, Farcy+ 2022, Nunez-Castineyra+ 2022, Peschken+ 2023, Kjellgren+ 2025

CRs are good candidate to drive outflows / alter CGM! Details are complicated...

isolated galaxies

cosmological galaxies

Jubelgas+ 2008, Salem+ 2014, Chan+ 2018, Hopkins+ 2020/2021/2022, Buck+2020, Ji+2020, Böss+ 2023, Rodriguez Montero+ 2024, Ramesh+ 2025

Current CR construction sites Where are the main uncertainties

CR transport

- diffusion + streaming
- energy transfer $B \leftrightarrow CR \leftrightarrow gas$

Mateusz Ruszkowski Lucia Armillotta **Timon Thomas**

> **Brandon Sike** Karin Kjellgren

- theory: pen&paper, 70s
- bottom-up plasma physics models (PIC)

e.g. Holcomb+2019, Shalaby et al. 2021/2023, Lemmerz et al. 2024

spectrally resolved CRs

- cover full E-range
- E-dependent cooling, transport
- live spectrum (t, \mathbf{X})
- precise connection to observations - gamma rays

 - radio synchrotron

Nimatou Seydi Diallo **Daniel Karner**

different species

- include
 - electrons
 - secondaries
 - unstable isotopes
- introduce CR clocks
- detailed comparison to Milky-Way

Allison Matthews Ralf-Jürgen Dettmar

Grey approximation assume universal spectrum

- total energy, dominated by GeV protons
- effective cooling+transport at GeV

Full spectrum temporally evolving spectrum

Skilling 1971, 1975a,b,c

 transport, losses, sources: function p simple diffusion: $D(p) \propto p^{0.5}$

Low energy CRs - CR ionisation

Cusack+ 2025

review by Padovani+ 2020

- CR ionisation rate: $10^{-18} 10^{-14} \text{ s}^{-1}$
- low-E CR set temperature floor
- Impact on fragmentation and star formation e.g. Brugaletta+PG+ 2025

Spectral CR in galaxies

- high energy CR escape faster
- no universal / steady state spectrum

 $\log CR$ energy density (eV cm⁻³)

Advection vs. diffusion

- dwarfs: shallow potential, strong outflows dominated by advection
- Milky Way: deep potential, weak outflows dominated by diffusion

dwarf galaxy

 $rac{1}{
ho} \left|
abla P_{
m cr}
ight| ^{-1} {
m Myr}^{-1})$

S

 10^{-10}

 10^{-10}

 $(\rm km \ s^{-1})$

 v_z

(g cm⁻

100

50

0

-50

-100

 10^{-28}

 10^{1}

 10°

Girichidis et al. 2024

1000

Advection vs. diffusion

- dwarfs: shallow potential, strong outflows dominated by advection
- Milky Way: deep potential, weak outflows dominated by diffusion

Milky Way

 $= 1/
ho \left|
abla P_{
m cr}
ight|$

(noise)

 $v_{z} \; (\rm km \; \rm s^{-1})$

(g cm⁻

 10^{1}

 10^{0}

10

 10^{-10}

 10^{-12}

 10^{-10}

100

50

-50

-100

 10^{-28}

Girichidis et al. 2024

1000

Connection to gamma rays

- Steady state vs. full spectrum Werhahn+ 2021abc, 2023
- Variations in Milky-Way models / Galactic center / Fermi bubbles Kjellgren et al. 2025

• spectral model: better fit to spectra

strong differences between energy ranges

Werhahn et al. 2023

Connection to gamma rays

- Steady state vs. full spectrum Werhahn+ 2021abc, 2023
- Variations in Milky-Way models / Galactic center / Fermi bubbles Kjellgren et al. 2025

• spectral model: better fit to spectra

strong differences between energy ranges

Werhahn et al. 2023

spectral CR electrons

- MHD sim of SN + electron tracers lacksquare
- spectrally resolved CR electrons in postprocessing

(Winner+PG+ 2019, 2020)

spectral CR electrons

- MHD sim of SN + electron tracers lacksquare
- spectrally resolved CR electrons in postprocessing

(Winner+PG+ 2019, 2020)

- MHD sim of SN + electron tracers
- processing

other spectrally resolved CR electrons

Yang+ 2017,2022

- **AGN-driven Fermi Bubbles** lacksquare
- investigate advection vs. cooling spectral shape and energy distribution

Ogrodnik+ 2021

full Fokker-Planck+MHD solver

Whittingham et al. 2025

- Cosmo. shock: synthetic radio emission
- observed B field strength differs from MHD

- Radio relics: Böss et al, 2023a,b
- shock properties, variations in spectral index

Primaries to secondaries example B/C ratio

- assume CRs are universally accelerated from ISM
- expect similar composition as in stars/ ISM (very abundant alpha elements!)
- but observed relative overabundance of light elements (e.g. B)
- B must be produced while travelling through ISM
- more $B \Rightarrow$ longer residence time in ISM

CRs with high E escape faster

.016	-
	-
	-
· · · · ·	-

Secondaries in simulations example B/C ratio

 many species in steady state GALPROP Strong&Moskalenko 1998 ++++ (v57) DRAGON2 Evoli+2017,2018 PICARD Kissmann+2014

Hopkins et al. 2022

MHD cosmo. zoom

Baldacchino-Jordan+PG 2025

Take home points

CRs are important for outflows, details debated

- (1) new plasma transport models (complex)
- (2) live CR spectra in ISM & galaxy sims

proton spectra: different CGM / outflows

proton spectra: better fit to γ -ray obs.

• CR e^- + secondaries: B/C ratio, clocks

