Some Issues in Cosmic Ray Feedback

Ellen Zweibel
University of Wisconsin

The Where of Cosmic Ray Feedback

- Gas cycle in galaxies:
 - Outflows: winds, fountains
 - Heating, pressurizing, & structuring the CGM
- Formation of dense, star forming gas:
 - Thermal instability
 - Nature of interstellar turbulence

What are the appropriate theoretical models for describing these processes and what are their observational signatures?

A Multiscale Problem

- Characterize the interaction between cosmic rays and ~
 AU scale (gyroscale) magnetic field fluctuations.
 - Huge progress since the last Thinkshop in simulating the interaction of cosmic rays with magnetic waves & turbulence.
 - Goal is characterizing energy & momentum exchange
 - Inextricably intertwined with structure of magnetic field & nature of turbulent cascade
 - Very dependent on the state of the thermal gas (ionization level, β).
- Mesoscale processes:
 - Bottlenecks
 - Energy exchange with large scale turbulence.

The Classical Picture of Cosmic Ray Transport

- Propagation model:
 - Self confinement: scattering by waves amplified by cosmic ray driven instabilities?

Or

– Scattering by waves generated through a turbulent cascade?

— <u>2017PhPl...24e5402Z</u>

Extrinsic Turbulence

- Advection by the thermal gas, diffusion, & possibly stochastic acceleration.
- CR transfer momentum to the gas through their pressure gradient.
- Exact B need not actually be modeled
- Empirically chosen diffusivity & acceleration rates are somewhat ad hoc.

Self Confinement

- Stream relative to the gas at a rate determined by marginal stability criterion for waves (thermal damping balances cosmic ray driving).
- Transfer momentum through pressure gradient and heat through wave excitation.
- Demands understanding of wave damping & an accurate magnetic field model.
- Theory of self confinement near sources still needed. *TeV Halos, Nonresonant instabilities*

Boil Transport Down to a Cosmic Ray Equation of State?

Firefox

 γ_c = 0: Large diffusion

 γ_c = 2/3: Alfvenic streaming

 γ_c = 4/3: Small diffusion; advection dominated.

Roark Habegger: Simulations of a stratified ISM patch with supernova injections (RH & EZ Preprint)

Observational Diagnostic? Cosmic Ray Mediated Cloud/Intercloud Transitions

Is Propagation Due for a Reset?

From Kempski 2023

How does the background magnetic field structure affect propagation?

- Growth and damping of instabilities in a turbulent background
- Interaction of cosmic rays with folded turbulence

Where does the ISM turbulent cascade end?