The (Un)Changing ISM in FIRE Galaxies through Cosmic Time

18th Potsdam Thinkshop Potsdam, Germany July 14, 2025

Matt Orr CCA | Flatiron Institute Physics & Astronomy | Rutgers University

Unveiling the Drivers of Galaxy Growth

300 kpc

(Lack of) Redshift Evolution of Spatially **Resolved Kennicutt-Schmidt**

Despite significant redshift evolution of galaxy populations, gas converts into stars on ~kpc scales in a consistent way

(Grudic+2018)

Plenty of models, once there are only care about the ratio of local timescale to surface density

JWST+PHANGs NGC628

Goal: make galaxy simulations that look like this

Orr in prep.

Resolving Galaxies in Simulations

Cosmological simulations are in a unique position to help resolve questions about star formation within galaxies.

The FIRE Simulations (Feedback In Realistic Environments)

FIRE-1: Hopkins+2014, MNRAS 445, 581 FIRE-2: Hopkins+2018, MNRAS 480, 800 FIRE-3: Hopkins+2023, MNRAS 519, 3154

z=0.05

fire.northwestern.edu

(local) Jas Gas cycle **Turbulence Decaying** Starts collapsing

cloudsretorm

Turbulence Increasing

 $\mathbf{O}^{\mathbf{V}}$

dsbreakup.

Feedback!

New Stars!

Gets cold + dense

(local) Jas Gas cyce Gets cold + der se **Turbulence Decaying** Starts collapsing

cloudsretorm

Turbulence Increasing

 $\setminus O^{V}$

ds break up...

Feedback!

New Stars!

(local) Gas tracers

Gets cold + der

Tuxbulence Decaying

Starts collapsing

clouds restorm

Furbulence Increasing

Star formation tracers

New Stars!

breakup...

Star formation tracers

Stars!

New

breakup...

Ing

Velocity Dispersions & SFRs in *Disks*

(Orr+2020, *MNRAS 496, 1620*) $_{x \; [
m kpc]}$

What (theoretically) drives the dispersions?

What (theoretically) drives the dispersions?

Gas orbital energy decay balances turbulence dissipation.

What (theoretically) drives the dispersions?

Gas orbital energy decay balances turbulence dissipation.

Star formation is always 1% efficiency per free fall time.

What (theoretically) drives the dispersions?

Gas orbital energy decay balances turbulence dissipation.

Star formation is always 1% efficiency per free fall time.

Feedback (SNe) balances turbulence dissipation.

Evolution of star-forming regions can smear out relation at low SFRs

What (theoretically) drives the dispersions?

turbulence dissipation.

02

-0.4

log √(M_o yr⁻¹ Mpc⁻³) 2- -5 8- -5 -5

We've been focused on *late times*

02

-0.4

-1.2

(10-300 (Wbc⁻³)

log ∦(M_o yr⁻¹ 2- -5 -5

We've been focused on late times

The Milky Way's disk formed z~1

02

-0.4

-1.2

(no −0.8) Mbc⁻³

log ∦(M_o yr⁻¹ -1.6 -5- 4(M

We've been focused on late times

The Milky Way's disk formed z~1

Peak star formation z~2

02

-0.4

-1.2

(0-3) 8.0− 8

log ∦(M_o yr⁻¹.5 2-1.6 2-5-

We've been focused on late times

The Milky Way's disk formed z~1

Peak star formation z~2

02

-0.4

-1.2

-1.6

(n-0.8 Mbc-3

log ψ(M_© yr

We've been focused on late times

The Milky Way's disk formed z~1

Peak star formation z~2

Is star formation, the effects of feedback, or properties of the **ISM changing as disks form?**

Do other properties of the ISM change with dispersions over time? **Z=0**

FIRE-2 MW-mass Spirals

Do other properties of the ISM change with dispersions over time? **Z=0**

Do other properties of the ISM change with dispersions over time? **Z=1**

FIRE-2 MW-mass Progenitors

Jump in dispersions between z= 0 and z=1

Before z ~ 0.7 they aren't disks

(Orr+2025 in prep.)

Do other properties of the ISM change with dispersions over time? **z=2**

FIRE-2 **MW-mass** Progenitors

No disks... these are all dwarfs at this time

(Orr+2025 in prep.)

Do other properties of the ISM change with dispersions over time?

FIRE-2 **MW-mass** Progenitors

No disks... these are all dwarfs at this time

> ...trends remain similar in the ISM to $z \sim 3$

(Orr+2025 in prep.)

Z=3

Do other properties of the ISM change with dispersions over time?

2.0

 $\left(s \right)$

 $\log(\sigma_z \, [\mathrm{km}]$

1.0

-3

-2

FIRE-2 **MW-mass** Progenitors

No disks... these are all dwarfs at this time

> ...trends remain similar in the ISM to $z \sim 3$

(Orr+2025 in prep.)

And so?

Is feedback or star formation fundamentally changing with redshift, or is it a game of normalization

The galaxy potential sets the "demand" from energy/ momentum sources

Timescale Hierarchy ~ "Regulated"

The ISM is driven to local (marginal) stability on its natural scale

(Local scale height/ largest eddy scale)

Inanks!

