

Structure and porosity of the multiphase ISM in nearby spatially resolved galaxies

Lise Ramambason, Postdoc at the University of Heidelberg Institut für Theoretische Astrophysik

18th Potsdam Thinkshop: The role of feedback in galaxy formation, from small scale winds to large scale outflows - 14/07/25

ASTRONOMIE

I - Context : ISM structure, porosity, and time-evolution How does the porosity of ionizing photons impact the multi-scale ISM ?

Large **diffuse ionized gaz** reservoirs (20-60%) Della Bruna+21, Belfiore+22 Escape fractions < f_{esc, HII} > ~ **0 - 70 %** Pellegrini+12, Choi+20, Della Bruna+21, Barnes+22 Ramambason+22, Teh+23, Scheuermann+in prep

The ISM structure and porosity vary with spatial scales... and time !

I - Context : ISM structure, porosity, and time-evolution Constraining the evolutionary timeline of gas, dust, and stars in SF regions

Theoretical approaches : - GMC-scale simulations *e.g., STARFORGE Grudić et al. 2018* - Semi-analytic 1D models *e.g., WARPFIELD, Pellegrini+20*

See Jia Wei Teh's poster on TRINITY feedback model !

Constraints from observations :

- dynamics of expanding regions
- cluster age
- spatial distribution of the gas vs. SFR around peaks

Large Magellanic Cloud, ESA/NASA/JPL-Caltech/CSIRO/C. Clark (STScI), Fahrion et al. 2024, STARFORGE Grudić et al. 2018

I - Context : ISM structure, porosity, and time-evolution Constraining the evolutionary timeline of gas, dust, and stars in SF regions

- How long do stars stay embedded in dust and gas before they
 1. emerge in the optical,
 2. destroy their host cloud ?
- Which physical processes are driving these transitions, and are they universal ?

Large Magellanic Cloud, ESA/NASA/JPL-Caltech/CSIRO/C. Clark (STScI), Fahrion et al. 2024, STARFORGE Grudić et al. 2018

II - Data: PHANGS-JWST surveys, mid-IR imaging of 74 nearby galaxies Lee et al. 2023, Williams et al. 2024, Chown et al. 2025 (Cycle 1, PI: J. Lee + Cycle 2, PI A. Leroy)

8 MIRI + NIRCam bands : PAH tracing bands See Oleg Egorov's talk on Tuesday !

continuum-dominated band at $21\mu m \Rightarrow$ proxy for embedded SFR *Belfiore et al. 2023* 5/17 II - Constraining the duration and properties of the embedded SF phase in the PHANGS-JWST survey (Ramambason+subm, arXiv:2507.01508)

Sub-sample selection : - observed in CO, 21 μm , and H α

- sufficient resolution (< 180pc) to resolve decorrelation between 21µm and CO

⇒ <u>37 galaxies</u> with a wide range of physical properties and morphologies

III. Method : interpreting gas and stars de-corellations with the "tuning-fork"

Main assumption : the observed clouds population samples the GMCs evolutionary timeline

7/17

III. Method : interpreting gas and stars de-corellations with the "tuning-fork"

PHANGS-ALMA : Leroy et al. (2021) PHANGS-Hα: Razza et al. subm PHANGS-JWST: Lee et al. (2023), Williams et al. (2024), Chown et al. (2025)

PHANGS-ALMA : Leroy et al. (2021) PHANGS-Hα: Razza et al. subm PHANGS-JWST: Lee et al. (2023), Williams et al. (2024), Chown et al. (2025)

Timescales associated with PAH emission (Kim, Chevance, Ramambason et al. 2025)

1. Is the dust-obscured phase of star-formation short in all galaxies ?

1. Is the dust-obscured phase of star-formation short in all galaxies ?

Ramambason et al. subm

⇒ Feedback timescales consistent with pre-supernova feedback (< 4 - 5Myr) e.g, Chevance+20,+22, Kim+21,+23

⇒ t_{obscured} consistent with age estimates of dust-embedded young stellar populations ~ 1 - 4 Myr e.g, Whitmore+15, Hollyhead+15, Grasha+18, Deshmuk+24, Sun+24, Rodriguez+25, Whitmore+25

- longer dust-obscured star-formation phase **barred spiral galaxies**

2. Which parameters regulate the timescales of the dust emission at 21um ? Ramambason et al. subm

- later type galaxies (flocculent and irregular morphologies)
- lower metallicities (from PHANGS-MUSE, Emsellem+22, Williams+22)

2. Which parameters regulate the timescales of the dust emission at 21um ? Ramambason et al. subm

⇒ reduced duration of the 21µm emission and duration obscured SF phase in galaxies with <u>lower metallicity</u>? → effect of increased ISM porosity at low-metallicity ? Observed at galactic scales e.g., Cormier+19, Chevance+20b, Ramambason+22,+24

13/17

V - Multicomponent modelling of low-metallicity HII regions (in prep)

Data : 6 dwarf galaxies observed with MUSE+HST (LEGUS-dwarf, Egorov+in prep)

Catalog with ~ 1700 nebular regions ~1100 HII regions (BPT classification)

<u>Method</u> : multicomponent modelling with MULTIGRIS (Lebouteiller & Ramambason+22)

Combination of Cloudy models from a large grid of models, tailored for low-Z conditions SFGX model grid, Ramambason+22 Cloudy models with single burst stellar cluster

V - **MULTIGRIS**: a Bayesian tool for multicomponent ISM modelling Lebouteiller & Ramambason 2022, GitLab: <u>https://gitlab.com/multigris/mgris</u>

Increasing number of ISM components

also used in Ramambason+24, Varese+25, Lebouteiller+25, Richardson+in prep, Levanti+in prep

V - Multicomponent modelling of low-metallicity HII regions (in prep)

Output : predicted PDF of key parameters incl. the escape fraction from ~1100 HII regions

Main take-away

Ramambason+ subm (arXiv: 2507.01508)

- The dust-obscured star-formation phase is typically short (< 1 Myr)</p>
- Feedback timescales hint at a predominant role from pre-SN stellar feedback (< 4 5 Myr)
- The 21µm timescales and timescale of embedded SF phase vary with:
 - morphological type
 - metal and dust content

⇒ Connecting GMC evolution with the properties of HII regions / star clusters

⇒ explore properties of low-metallicity ISM and its porosity to ionizing photons (f_{esc,HII})

⇒ combine/compare key quantities & timescales derived with different approaches (e.g., statistical, modelling, simulation)

Back-up slides

I - Context : star formation and its dust-embedded phase How to disentangle the signatures of stellar feedback mechanisms ?

Star formation cycle :

- 1. <u>how</u> it started ?
- 2. <u>how</u> efficient ?
- 3. <u>which</u> feedback processes ?
- \Rightarrow evolution over cosmic times

Multiscale, multiwavelength, and evolving processes

In this talk:

- 50 pc \rightarrow 10 kpc
- $mm \rightarrow optical tracers$
- GMC formation → destruction

(10-30 Myr, Chevance et al. 2020, Kim et. al. 2022)

Galaxie NGC 628, Kim et al. 2023

I - Context : ISM structure, porosity, and time-evolution Constraining the evolutionary timeline of gas, dust, and stars in SF regions

Evolutionary timelines of GMCs depend on :

→ feedback mechanisms e.g., Smith+21, Semenov+21

 \rightarrow GMC properties (incl. chemistry) e.g., Fukushima+20, Yoo+20

 \rightarrow galactic properties e.g., Chevance+20, Kim+22

... varies within galaxies from region to region e.g., Chevance+22, Romanelli+25

Large Magellanic Cloud, ESA/NASA/JPL-Caltech/CSIRO/C. Clark (STScI), Fahrion et al. 2024, STARFORGE Grudić et al. 2018

II - Constraining the duration and properties of the embedded SF phase in the PHANGS-JWST survey (Ramambason+subm, arXiv:2507.01508)

III. Method : interpreting gas and stars de-corellations with the "tuning-fork" Kruijssen & Longmore 2014, Kruijssen et al. 2018

Kim et al. 2022

 \Rightarrow extensively applied to local star forming galaxies

e.g., Chevance et al. 2020a,b, 2022; Zabel et al. 2020; Kim et al. 2021, 2022, 2023; Ward et al. 2020, 2022; Lu et al. 2022; Kruijssen et al. 2024; Romanelli et al. 2025; Kim et al. 2025

and to simulations

e.g., Haydon et al. 2020; Fujimoto et al. 2019; Semenov et al. 2021; Keller et al. 2022

II - 2.Method : measuring the duration of the dust-obscured phase of SF Kim et al. 2021, Kim et al. 2023

Is the dust-obscured phase of SF this short in all galaxies ? dependencies ?

III- 2. The tuning-fork method: exploiting spatial correlations between stars and gas

Kruijssen & Longmore+14 Kruijssen et al. 2018

III- 2. The tuning-fork method: exploiting spatial correlations between stars and gas

Kruijssen & Longmore+14 Kruijssen et al. 2018

III- 2. The tuning-fork method: exploiting spatial correlations between stars and gas

Kruijssen & Longmore+14 Kruijssen et al. 2018

Reproducing gas/star de-correlation in simulations

Chevance et al. 2023, PPVII review

Morphological T type (Paturel+98)

range of t	typ	range of typ	type
$-5 \le t < -3.5$	E	$3.5 \le t < 4.5$	Sbc
$-3.5 \le t < -2.5$	E-SO	$4.5 \le t < 6.5$	Sc
$-2.5 \le t < -1.5$	SO	$6.5 \le t < 7.5$	Scd
$-1.5 \le t < 0.5$	SOa	$7.5 \le t < 8.5$	Sd
$0.5 \le t < 1.5$	Sa	$8.5 \le t < 9.5$	Sm
$1.5 \le t < 2.5$	Sab	$9.5 \le t < 10$	Irr
$2.5 \le t < 3.5$	\mathbf{Sb}		

 Table 3. Output morphological type codes

Smaller decorellation scale when using 21um vs Ha as SFR tracer

Correlations using the Holm-Bonferroni method

$$p_{\rm eff} = \frac{p_{\rm ref}}{N_{\rm corr} + 1 - i}$$

Global parameters						kpc-scale						GMC-scale				HII region					Heisenberg					Systematics						
t _{21µn}	0.42 (-2.02	0.38 (-1.66)	0.23 (-0.78)	-0.46 (-2.36	0.43 (-2.07	0.43 (-2.08	0.12 (-0.31)	-0.07 (-0.17)	0.06	-0.03 (-0.07)	-0.26 (-0.63)	0.13 (-0.35)	0.01 (-0.02)	-0.31 (-1.18	-0.08	0.54 (-3.24	-0.09 (-0.21)	0.55 (-3.38)	0.36 (-1.57)	0.28 (-1.01	0.08	0.54 (-1.87)	0.43 (-0.95)	-0.3 (-1.17	-0.16 (-0.47	0.07	0.25	0.08 (-0.2)	0.52 (-3.05	0.26 (-0.91)	-0.02 (-0.05)	0.01 (-0.01
$\frac{t_{21\mu m}}{t_{22}}$	0.21	0.39 (-1.78)	0.07 (-0.17)	-0.29 (-1.09)	0.33 (-1.34)	0.24 (-0.82)	-0.2 (-0.63)	0.1 (-0.24)	0.03	-0.13 (-0.35)	0.0 (0.0)	0.06 (-0.14)	-0.26 (-0.92)	-0.29 (-1.09	0.06	0.35	0.04	0.25 (-0.89)	0.23 (-0.76)	0.11 (-0.29	-0.18 (-0.29	0.13 (-0.23)	0.39 (-0.83)	-0.51 (-2.87	-0.36 (-1.56	-0.14	0.03	0.15	0.55 (-3.33	0.18 (-0.55)	0.14 (-0.39)	-0.19 (-0.6)
$f_{diffuse}^{21\mu m}$	0.4 (-1.83)	-0.2 (-0.64)	-0.11 (-0.28)	-0.33 (-1.31)	-0.03 (-0.06)	0.35 (-1.49)	0.52 (-3.0)	-0.51 (-2.89	-0.3 (-1.13)	0.04 (-0.09)	-0.06 (-0.1)	0.5 (-2.78)	0.36 (-1.52)	0.36 (-1.57	0.05 (-0.12	0.44 (-2.19	0.01 (-0.01)	0.44 (-2.21)	0.4 (-1.83)	0.31 (-1.19	0.58 (-1.62	0.48 (-1.47)	0.1 (-0.14)	0.13 (-0.35)	-0.04 (-0.1)	0.14 (-0.39)	0.04 (-0.1)	0.1 (-0.24)	-0.26 (-0.89)	0.3 (-1.15)	0.11 (-0.28)	0.19 (-0.58
$\lambda_{ m fb,21\mu m}$	0.55 (-1.18)	0.57 (-1.29)	0.15 (-0.19)	-0.48 (-0.94)	0.63 (-1.55)	0.53 (-1.12)	0.16 (-0.21)	-0.19 (-0.25)	-0.08 (-0.1)	0.0 (0.0)	-0.93 (-2.6)	0.39 (-0.68)	0.12 (-0.15)	-0.29 (-0.45)	-0.59 (-1.38)	0.58 (-1.32)	-0.31 (-0.48)	0.63 (-1.55)	0.25 (-0.37)	0.24 (-0.35)	0.4 (-0.54)	0.48 (-0.8)	0.97 (-4.67	-0.04 (-0.05)	-0.35 (-0.58)	0.52 (-1.1)	0.48 (-0.95)	-0.22 (-0.31)	0.06 (-0.06)	0.8 (-2.72	0.38 (-0.66)	0.42 (-0.76)
t _{fb, 21µm}	0.64 (-1.62)	0.17 (-0.22)	0.34 (-0.56)	-0.71 (-2.02)	0.36 (-0.59)	0.59 (-1.35)	0.71 (-2.04)	-0.62 (-1.48)	0.01 (-0.01)	-0.0 (-0.0)	-0.61 (-0.83)	0.77 (-2.46)	0.51 (-1.05)	0.21 (-0.3)	-0.42 (-0.76)	0.91 (-4.38	-0.35 (-0.58)	0.92 (-4.55)	0.67 (-1.77)	0.68 (-1.81)	0.65 (-1.24)	0.77 (-2.05	0.63 (-1.17)	0.13 (-0.17)	-0.1 (-0.12)	0.35 (-0.58)	0.45 (-0.86)	-0.08 (-0.1)	0.1 (-0.12)	0.53 (-1.12)	0.52 (-1.1)	0.43 (-0.8)
tobscured	0.83 (-3.1)	0.3 (-0.47)	0.13 (-0.16)	-0.67 (-1.78)	0.57 (-1.29)	0.8 (-2.79	0.68 (-1.81)	-0.77 (-2.46	-0.3 (-0.47)	-0.14 (-0.17)	-0.18 (-0.15)	0.8 (-2.72	0.59 (-1.38)	0.19 (-0.25)	-0.08 (-0.09)	0.57 (-1.29)	-0.49 (-0.97)	0.66 (-1.73)	0.62 (-1.48)	0.7 (-1.94)	0.6 (-1.06)	0.89 (-3.21	0.42 (-0.58)	0.15 (-0.2)	-0.1 (-0.12)	0.46 (-0.88)	0.47 (-0.9)	0.13 (-0.16)	0.51 (-1.05)	0.03 (-0.04)	0.29 (-0.44)	-0.04 (-0.05)
	M*	${ m M}_{ m HI}$, global	Δ MS	Hubble type	Mgas, global	${ m M}_{ m tot,\ global}$	$\mathrm{f}_{\mathrm{H}_2}$, global	fgas, global	SSFR	Σ ^{kpc} SFR	Σ ^{kpc}	Σ ^{kpc}	$\Sigma_{H_2}^{kpc}$	ρ*kpc	PDE	ØV, GMC	avir, GMC	$\mathrm{M}_{\mathrm{GMC}}$	Pint	Σ _{H2} , gmc	E(B-V)	12+log(O/H)	Lmix, 50%	Σ_{H_2} , compact	Σ_{SFR}	M_{H_2}	SFR	εсо	£21μm.	lap, min	i	C

2. Which parameters regulate the duration of the dust emission at 21um ? Ramambason et al. in prep

- \Rightarrow Increased duration of the 21µm emission and feedback phase in galaxies with :
 - more massive GMCs
 - higher velocity dispersion

Additional correlations

III - 3. Results : measuring the timescales associated with the dust-embedded SF
 2. Which parameters regulate the timescales of the dust emission at 21um ?
 Ramambason et al. subm

⇒ increased duration of the 21µm emission and duration obscured SF phase in galaxies with <u>higher metallicity</u>? → effect of increased ISM porosity at low-Z? observed at galactic scales e.g., Cormier19, Chevance+20b, Ramambason+22,+24

II- 3. Application of MULTIGRIS: escape fractions of ionizing photons (Ramambason+22)

• model = combination of 1,2 or 3 components (Cloudy)

 data = suite of IR lines tracing the ionized and neutral atomic gas

Neutral and ionized gas tracers

 $[O_1]\lambda\lambda 63,145\mu m$ [Fe II] $\lambda\lambda 17,25\mu m$ (7.9eV), $[Si II] \lambda 34 \mu m (8.2 eV),$ $[C II]\lambda 158\mu m (11.3eV).$ Hu $\alpha\lambda$ 12 μ m (13.6eV), $[N II]\lambda\lambda 122,205\mu m (14.5eV),$ $[Ar II]\lambda7\mu m (15.7eV).$ [Fe III] $\lambda 23\mu m$ (16.2eV), [Ne II] λ 12μm (21.6eV), $[S III]\lambda\lambda 18,33\mu m (23.3eV),$ $[Ar III]\lambda \lambda 9.21 \mu m (27.6 eV),$ $[N III]\lambda 57\mu m (29.6eV),$ $[S \text{ iv}]\lambda 10\mu\text{m}$ (34.7eV), [O III]λ88μm (35.1eV), [Ne III] $\lambda 15 \mu m$ (40.9eV) $[O \text{ IV}]\lambda 26\mu\text{m} (54.9\text{eV}),$ [Ne v] $\lambda\lambda$ 14,24 μ m (97.1eV), L_{TIR} (1 μ m-1000 μ m)

Main result with multicomponent models: Relatively high predicted escape fractions of ionizing photons, decreasing metallicity and increasing sSFR.

Total infrared luminosity