Complex outflows, simple relations how $M - \sigma$ emerges in a turbulent environment (A&A, submitted)

> Kastytis Zubovas^{1,2} Matas Tartėnas¹, Eimantas Skuodas²

¹Center for Physical Sciences and Technology, Vilnius ²Vilnius University

18th Potsdam Thinkshop, July 2025

• A fundamental connection between the mass of the SMBH and the velocity dispersion of its host galaxy spheroid:

 $M_{\rm BH} \simeq 3 \times 10^8 \, (\sigma_*/200 {\rm km/s})^{\alpha} \, M_{\odot}; \quad \alpha \sim 4-5$ (1)

- Established as early as $z \sim 6$, hardly any evolution with redshift
- Cannot be explained by gravity, because SMBH gravitational influence reaches \sim 20 pc $\ll R_{\rm spheroid}$
- Most likely evidence of energetic feedback from SMBH growth during luminous accretion

- Ultra-fast (quasi-relativistic) wide-angle winds in AGN discovered in 2003 (Pounds et al. 2003)
- Common in AGN (Tombesi et al. 2013)
- Velocity $v_{
 m w} \sim 0.1 c$, kinetic power $\sim 0.05 L_{
 m AGN}$
- Freely streams for tens to hundreds pc (Costa et al. 2020), then shocks against relatively static ISM
- Shock temperature $T_{\rm sh} \sim 10^{10}$ K, can only cool by inverse Compton scattering (King 2003)

- If cooling is efficient ($t_{\rm cool} < t_{\rm expansion}$), only wind momentum rate $\dot{p}_{\rm w} \sim L_{\rm AGN}/c$ is transferred to the surrounding ISM
- Momentum-driven outflow can only expand to large distances if $L_{\rm AGN} > L_{\rm crit}$ (Murray et al. 2005)
- Equating $L_{\rm AGN}$ with $L_{\rm Edd}$ gives a condition on $M_{\rm BH}$ which is remarkably close to the observed $M \sigma$ relation: $M_{\sigma} \simeq 3 \times 10^8 (\sigma/200 {\rm km/s})^4 M_{\odot}$ (King 2003, 2010)
- Conversely, inefficient cooling leads to much more powerful outflows with properties comparable to many observed large-scale outflows (Zubovas & King 2012)
- How do we get both momentum- and energy-driven outflows?

Results - global

KZ+King (2012)

Model

Context

- Original idea: cooling efficient within some radius $R_{\rm C} \sim 500$ pc, so only momentum-driven outflows exist inside; when they reach this radius, they transition to energy-driven (King 2003)
- Two problems:
 - Massive powerful outflows detected at smaller radii
 - Shocked wind plasma is two-temperature, cools very inefficiently, $R_{\rm C} \ll 1$ pc (Faucher-Giguère & Quataert 2012)
- Alternate idea: in a turbulent ISM, energy-driven outflow expands through low-density channels, leaving dense clumps behind; they are exposed to wind momentum only (Zubovas & Nayakshin 2014)

 Context
 Model
 Results - global
 Results - effect on gas clusters
 Summar

 000000
 0
 00
 0
 0
 0
 0

Outflow in a turbulent medium

Laužikas+KZ (2024)

Simulation setup

• SMBH, $M_{\rm BH} = 10^8 M_{\odot} = M_{\sigma}$

Results - effect on gas clusters

Summary

- Background isothermal gravitational potential with $\sigma = 142 \ {\rm km \ s^{-1}}$
- Turbulent gas shell between $R_{\rm in}=0.1$ kpc and $R_{\rm out}=1$ kpc, total mass $M=9.4\times10^8~M_\odot$ $(f_{\rm g}=0.1)$
- AGN luminosity $L = \{0.1 - 2.5\}L_{\text{Edd}}(M_{\sigma})$

Context	Model	Results - global	Results - effect on gas clusters	Summary
000000	O	●000000000	00	O
Density ev	volution			

Context	Model	Results - global	Results - effect on gas clusters	Summary
000000	o	0●00000000	00	O
Density ev	volution			

Context	Model	Results - global	Results - effect on gas clusters	Summary
000000	O	000000000	00	O
Density ev	olution			

Mass profiles - L0.5

Mass profiles - L1.0

Summary O

Mass profiles - L2.0

Summary

- \bullet AGN with $L_{\rm AGN} \lesssim 0.7 L_{\rm Edd}$ inflate outflows, but do not stop cold gas infall
- AGN with $L_{AGN} \simeq L_{Edd}$ stall cold gas infall and remove cold diffuse gas, but cannot prevent cold dense filament accretion
- An AGN needs $L_{\rm AGN}\gtrsim 1.7L_{\rm Edd}$ to quench further SMBH growth, even when the shocked wind energy is not radiated away

Context	Model	Results - global	Results - effect on gas clusters	Summary
000000	O	000000000	●O	O
Effect on	clusters			

- An outflow driven by AGN wind energy input, carrying a total of $\sim 0.02 L_{Edd}$ kinetic power, deposits most of this power into diffuse gas and inflates large bubbles, while dense gas clouds and filaments remain exposed primarily to the wind momentum
- This result allows both energy-driven and momentum-driven outflows to coexist in the same object, the first leading to massive observed gas flows, the second providing a condition for establishing the $M \sigma$ relation
- Rather idealised tests so far, many steps needed to create self-consistent simulations following the whole feedback loop; we're working on it!

Bonus slides

Phase plots - L0.5

Phase plots - L1.0

Phase plots - L2.0

Simpler outflows - smooth, adiabatic

Simpler outflows - smooth, cooling

Simpler outflows - turbulent, adiabatic

Simpler outflows - turbulent, cooling

Simpler outflows - coupling efficiencies

