Complex outflows, simple relations

how M — o emerges in a turbulent environment
(A&A, submitted)

Kastytis Zubovas!?

Matas Tarténas!, Eimantas Skuodas?

E;;’!‘P CENTER

FOR PHYSICAL SCIENCES

,,i % AND TECHNOLOGY

LCenter for Physical Sciences and Technology, Vilnius
2Vilnius University

18th Potsdam Thinkshop, July 2025



Context
00000

M — o relation

@ A fundamental connection between the mass of the SMBH
and the velocity dispersion of its host galaxy spheroid:

Mgy ~ 3 x 108 (0, /200km/s)* My; a~4—5 (1)

o Established as early as z ~ 6, hardly any evolution with
redshift

@ Cannot be explained by gravity, because SMBH gravitational
influence reaches ~ 20 pc < Rypheroid

@ Most likely evidence of energetic feedback from SMBH growth
during luminous accretion
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AGN wind-driven feedback

Ultra-fast (quasi-relativistic) wide-angle winds in AGN
discovered in 2003 (Pounds et al. 2003)

Common in AGN (Tombesi et al. 2013)
Velocity vy ~ 0.1c, kinetic power ~ 0.05LagN

Freely streams for tens to hundreds pc (Costa et al. 2020),
then shocks against relatively static ISM

Shock temperature Ty, ~ 10%° K, can only cool by inverse
Compton scattering (King 2003)
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Momentum versus energy driving

o If cooling is efficient (tcool < texpansion), only wind momentum
rate pw ~ Lagn/ ¢ is transferred to the surrounding ISM

@ Momentum-driven outflow can only expand to large distances
if LagN > Lerit (Murray et al. 2005)

@ Equating Lagn with Lggq gives a condition on Mgy which is
remarkably close to the observed M — ¢ relation:
M, ~ 3 x 108 (¢/200km/s)* M, (King 2003, 2010)

@ Conversely, inefficient cooling leads to much more powerful
outflows with properties comparable to many observed
large-scale outflows (Zubovas & King 2012)

@ How do we get both momentum- and energy-driven outflows?
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Momentum versus energy driving
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Cooling vs turbulence

@ Original idea: cooling efficient within some radius
Rc ~ 500 pc, so only momentum-driven outflows exist inside;
when they reach this radius, they transition to energy-driven
(King 2003)
@ Two problems:
o Massive powerful outflows detected at smaller radii
e Shocked wind plasma is two-temperature, cools very
inefficiently, Rc < 1 pc (Faucher-Giguére & Quataert 2012)
@ Alternate idea: in a turbulent ISM, energy-driven outflow
expands through low-density channels, leaving dense clumps
behind; they are exposed to wind momentum only (Zubovas
& Nayakshin 2014)
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Outflow in a turbulent medium
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Simulation setup

initial conditions

e SMBH,
Mgy = 108 My, = M,
@ Background isothermal

gravitational potential with
=142 kms!

@ Turbulent gas shell between
R = 0.1 kpc and
Rout = 1 kpc, total mass
M = 9.4 x 108 M,
(fy =0.1)

@ AGN luminosity
L ={0.1-25}Lg4q (My)
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Density evolution
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Density evolution
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Density evolution
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Mass profiles - L0.5
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Mass profiles - L1.0
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Results - global
[e]e]ele]e] lelelele}

Mass profiles - L2.0
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Results - global
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Cold gas mass evolution
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Cold gas mass

Min, cold + MBH,acc [MO]
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SMBH growth
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Global gas response to outflow

@ AGN with Lagn < 0.7Lgqq inflate outflows, but do not stop
cold gas infall

@ AGN with Lagn =~ Lgqq stall cold gas infall and remove cold
diffuse gas, but cannot prevent cold dense filament accretion

@ An AGN needs Lagn 2 1.7Lgqq to quench further SMBH
growth, even when the shocked wind energy is not radiated
away



Results - effect on gas clusters

Effect on clusters




Results - effect on gas clusters
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Effect on clus
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Summary

@ An outflow driven by AGN wind energy input, carrying a total
of ~ 0.02Lgqq kinetic power, deposits most of this power into
diffuse gas and inflates large bubbles, while dense gas clouds
and filaments remain exposed primarily to the wind
momentum

@ This result allows both energy-driven and momentum-driven
outflows to coexist in the same object, the first leading to
massive observed gas flows, the second providing a condition
for establishing the M — ¢ relation

@ Rather idealised tests so far, many steps needed to create
self-consistent simulations following the whole feedback loop;
we're working on it!
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Phase plots - L0.5
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Phase plots - L1.0
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Phase plots - L2.0
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Simpler outflows - smooth, adiabatic

KZ, Tarténas, Bourne (2024)
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Simpler outflows - smooth, cooling

KZ, Tarténas, Bourne (2024)
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Simpler outflows - turbulent, adiabatic

KZ, Tarténas, Bourne (2024)
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Simpler outflows - turbulent, cooling

KZ, Tarténas, Bourne (2024)
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KZ, Tarténas, Bourne (2024)
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