Miha Cernetic, Minghao Guo, James M. Stone, Eliot Quataert and Volker Springel

MULTI-SCALE (GR)MHD MODELLING OF ACCRETION ONTO SUPERMASSIVE BLACK HOLES WITH COSMOLOGICAL INITIAL CONDITIONS

18TH POTSDAM THINKSHOP 2025

_

NOTIVATION

- Accretion on SMBHs are a multi scale problem from the cosmological scale down to Schwarzschild radius ~ 14 orders of magnitude in spatial extent.
- We know halos do exist in the comic web, where they are connected to the environment and continuously accrete and feedback gas.
- There are currently two approaches in the community:
 - **Cosmological simulations rely on subgrid models tuned to reproduce** observations,

small scale GRMHD simulations use idealized setups.

METHODS

- Make a selection of high mass TNG-50 halos
- Map TNG data to AthenaK's format

Run at ever increasing zoom levels using Guo+ 2024 isolated M87 setup as baseline

GLOSSARY

- Illustris TNG a suite of cosmological MHD simulations.
- Arepo moving mesh MHD code used to run IllustrisTNG.
- AthenaK block-based cartesian AMR framewo in Kokkos (gpu accelerated).

AthenaK - block-based cartesian AMR framework with fluid, particle and numerical relativity solvers

- Interested in only the most massive halos at high resolution -> TNG-50.
- Focusing on halos $M > 7 \times 10^{12} M_{\odot}$ limits us to 30 halos.
- The halos need to be well resolved at small r.

at high Is

Some halos have very low number of cells at small r, as we are zooming into the center, such halos are not suitable.

Some halos have very low number of cells at small r, as we are zooming into the center, such halos are not suitable.

- 10^{8}
- 10^7 10⁶ 10⁶ 10⁷ 10⁷

Some halos have very low number of cells at small r, as we are zooming into the center, such halos are not suitable.

MAP TNG GALAXIES AS ICS FOR ATHENA RUNS

IllustrisTNG data is an unstructured voronoi mesh AthenaK uses a nested cartesian grid **Procedure:**

- 1. Get all particles within ~50 kpc of halo center from TNG snap 2. Construct a KdTree for fast neighbor search
- 3. Query the tree at Athena's grid coords \rightarrow 16M in ~10 seconds 4. Do this for density, momenta and total energy

AthenaK data extracted from TNG

MAPPED DATA

AthenaK data extracted from TNG

SMOOTHING MAPPED DATA Voronoi cells imprints cause arbitrary shocks that artificially amplify the

Voronoi cells imprints cause arbitrary initial relaxation.

SMOOTHING MAPPED DATA Voronoi cells imprints cause arbitrary shocks that artificially amplify the

- initial relaxation.
- **Smooth the ICs with an SPH kernel (the irony!)**

- Halo in "hydrostatic equilibrium".
- **Gravitational potential defined by TNG's:**
 - **1. Central black hole,**
 - **2.** NFW for dark matter, and
 - **3. NFW for stars.**
- Magnetic fields are initialized with a **Gaussian random vector potential at large scales** with $\beta = 100$.

- Halo in "hydrostatic equilibrium".
- **Gravitational potential defined by TNG's:**
 - **1.** Central black hole,
 - **2.** NFW for dark matter, and
 - **3.** NFW for stars.
- Magnetic fields are initialized with a **Gaussian random vector potential at large scales** with $\beta = 100$.

SETUP

- **Numerical details**
 - piecewise linear (PLM) reconstruction method,
 - **HLLC Riemann solver,**
 - the 2nd order Runge-Kutta time integration,
 - gravity, cooling, and heating included via operator splitting,
 - cooling by Schure et al. (2009) for solar metallicity, and
 - idealized phenomenological heating which balances the global but not local cooling rates.

Fiducial runs with 128³ cells

RUN THE SIMULATION

Fiducial runs with 128³ cells

To overcome the timestep constraint set by the smallest scales:

Fiducial runs with 128³ cells

- To overcome the timestep constraint set by the smallest scales:
 - Start with TNG ICs, excise a relatively large hole with $r_{in} = 2^{15} r_g$ as the initial BH

RUF

- **Fiducial runs with 12**
- To overcome the time
 - **Start with TNG IC**

e initial BH

Fiducial runs with 128³ cells

- To overcome the timestep constraint set by the smallest scales:
 - Start with TNG ICs, excise a relatively large hole with $r_{in} = 2^{15} r_g$ as the initial BH

Fiducial runs with 128³ cells

- To overcome the timestep constraint set by the smallest scales:
 - Start with TNG ICs, excise a relatively large hole with $r_{in} = 2^{15} r_g$ as the initial BH
- Run for $10^4 t_{dyn}$ at r_{in} without any mesh refining

M87:	r_in (r_g)	Scale
	2^15	10 pc
	2^11	0.6 pc
	2^7	40 mpc
	2^3	2.5 mpc

- Fiducial runs with 128³ cells
- To overcome the timestep constraint set by the smallest scales:
 - Start with TNG ICs, excise a relatively large hole with $r_{in} = 2^{15} r_g$ as the initial BH
- Run for $10^4 t_{dyn}$ at r_{in} without any mesh refining

• Run with dynamic mesh refinement for a few t_{dyn} and slowly shrink $r_{in} = 2^{11}, 2^7, 2^3 r_g$ **M87:** r_in (r_g) Scale 2^15 10 pc 2^11 0.6 pc 2^7 40 mpc

2.5 mpc

2^3

- Fiducial runs with 128³ cells
- To overcome the timestep constraint set by the smallest scales:
 - Start with TNG ICs, excise a relatively large hole with $r_{in} = 2^{15} r_g$ as the initial BH
- Run for $10^4 t_{dvn}$ at r_{in} without any mesh refining

 - Run for $10^4 t_{dyn}$

• Run with dynamic mesh refinement for a few t_{dyn} and slowly shrink $r_{in} = 2^{11}, 2^7, 2^3 r_g$ **M87:** r_in (r_g) Scale 2^15 10 pc 2^11 0.6 pc 2^7 40 mpc

2.5 mpc

2^3

- Fiducial runs with 128³ cells
- To overcome the timestep constraint set by the smallest scales:
 - Start with TNG ICs, excise a relatively large hole with $r_{in} = 2^{15} r_g$ as the initial BH
- Run for $10^4 t_{dvn}$ at r_{in} without any mesh refining

 - Run for $10^4 t_{dyn}$
 - Repeat

• Run with dynamic mesh refinement for a few t_{dyn} and slowly shrink $r_{in} = 2^{11}, 2^7, 2^3 r_g$ **M87:** r_in (r_g) Scale 2^15 10 pc 2^11 0.6 pc 2^7 40 mpc

2.5 mpc

2^3

- Fiducial runs with 128³ cells
- To overcome the timestep constraint set by the smallest scales:
 - Start with TNG ICs, excise a relatively large hole with $r_{in} = 2^{15} r_g$ as the initial BH
 - Run for $10^4 t_{dvn}$ at r_{in} without any mesh refining
 - - Run for $10^4 t_{dyn}$
 - Repeat

- Fiducial runs with 128³ cells
- To overcome the timestep constraint set by the smallest scales:
 - Start with TNG ICs, excise a relatively large hole with $r_{in} = 2^{15} r_g$ as the initial BH
 - Run for $10^4 t_{dvn}$ at r_{in} without any mesh refining
- Run for $10^4 t_{dyn}$
 - Repeat

- Fiducial runs with 128³ cells
- To overcome the timestep constraint set by the smallest scales:
 - Start with TNG ICs, excise a relatively large hole with $r_{in} = 2^{15} r_g$ as the initial BH
 - Run for $10^4 t_{dvn}$ at r_{in} without any mesh refining

 - Run for $10^4 t_{dyn}$
- Repeat

- Fiducial runs with 128³ cells
- To overcome the timestep constraint set by the smallest scales:
 - Start with TNG ICs, excise a relatively large hole with $r_{in} = 2^{15} r_g$ as the initial BH
 - Run for $10^4 t_{dvn}$ at r_{in} without any mesh refining
 - - Run for $10^4 t_{dyn}$
 - Repeat

- Fiducial runs with 128³ cells
- To overcome the timestep constraint set by the smallest scales:
 - Start with TNG ICs, excise a relatively large hole with $r_{in} = 2^{15} r_g$ as the initial BH
 - Run for $10^4 t_{dvn}$ at r_{in} without any mesh refining
- Run for $10^4 t_{dyn}$
 - Repeat

- Fiducial runs with 128³ cells
- To overcome the timestep constraint set by the smallest scales:
 - Start with TNG ICs, excise a relatively large hole with $r_{in} = 2^{15} r_g$ as the initial BH
 - Run for $10^4 t_{dvn}$ at r_{in} without any mesh refining

 - Run for $10^4 t_{dyn}$
- Repeat

- Fiducial runs with 128³ cells
- To overcome the timestep constraint set by the smallest scales:
 - Start with TNG ICs, excise a relatively large hole with $r_{in} = 2^{15} r_g$ as the initial BH
 - Run for $10^4 t_{dvn}$ at r_{in} without any mesh refining
 - - Run for $10^4 t_{dyn}$
 - Repeat

- Fiducial runs with 128³ cells
- To overcome the timestep constraint set by the smallest scales:
 - Start with TNG ICs, excise a relatively large hole with $r_{in} = 2^{15} r_g$ as the initial BH
 - Run for $10^4 t_{dvn}$ at r_{in} without any mesh refining
- Run for $10^4 t_{dyn}$
 - Repeat

NOW FOR SOME MOVIES!

_

Time=9.00e+07=51.56 kyr (Black lines: v, Grey lines: B)

Time=9.00e+07=51.56 kyr (Black lines: v, Grey lines: B)

Time=9.00e+07=51.56 kyr (Black lines: v, Grey lines: B)

- Mostly quick relaxation at low zoom level (blue)
- Stable accretion at higher zoom levels
- Halos 2 and 4 follow the "classic" decreasing accretion with increasing zoom level
- Halos O and 3 don't
- TNG model's accretion rate is more on the low side

Mostly quick relaxation at low zoom level (blue)

- Stable accretion at higher zoom levels
- Halos 2 and 4 follow the "classic" decreasing accretion with increasing zoom level

TNG model's accretion rate is more on the low side

- Mostly quick relaxation at low zoom level (blue)
- Stable accretion at higher zoom levels
- Halos 2 and 4 follow the "classic" decreasing accretion with increasing zoom level
- Halos O and 3 don't
- TNG model's accretion rate is more on the low side

- Mostly quick relaxation at low zoom level (blue)
- Stable accretion at higher zoom levels
- Halos 2 and 4 follow the "classic" decreasing accretion with increasing zoom level
- Halos O and 3 don't
- TNG model's accretion rate is more on the low side

- Mostly quick relaxation at low zoom level (blue)
- Stable accretion at higher zoom levels
- Halos 2 and 4 follow the "classic" decreasing accretion with increasing zoom level
- Halos O and 3 don't
- TNG model's accretion rate is more on the low side

ACCRETION RATE VS INNER RADIUS

- **Relationship between mass accretion rate and** inner radius for various runs.
- **Guo 2024 find a universal scaling of** $\dot{M} \propto r_{in}^{1/2}$
- **Cosmological ICs result in more complex halos do** not follow the scaling at certain zoom levels

FUTURE PLANS

- Extract magnetic fields from TNG,
- use the actual star distribution instead of the NFW,
- study the major accretion pathways of the "misbehaving" halos,
- identify the main source of torque on the gas,
- use Guo+ 2025b cyclic zoom approach to periodically zoom-inzoom-out - connect small scales to large ones and vice versa.

Figure 1. Schematics of the multi-zone method: the different colors represent the different zones being simulated. Radii are shown along the *y*-axis, with zone *i* extending from an inner radius of $8^i r_g$ to an outer radius of $8^{i+2} r_g$, where $r_g = GM_{\bullet}/c^2$ is the gravitational radius. Runtime is shown along the *x*-axis (not to scale). The plot here corresponds to one "V-cycle," advancing the entire domain forward by some time. A complete simulation consists of hundreds of V-cycles to allow full information exchange between the smallest and largest scales.