Miha Cernetic, Minghao Guo, James M. Stone, Eliot Quataert and Volker Springel

MULTI-SCALE (GR)MHD MODELLING OF
ACCRETION ONTO SUPERMASSIVE BLACK HOLES
WITH COSMOLOGICAL INITIAL CONDITIONS

18TH POTSDAM THINKSHOP 2025



MOTIVATION

) Accretion on SMBHs are a multi scale problem from the cosmological scale down to
Schwarzschild radius ~ 14 orders of magnitude in spatial extent.

) We know halos do exist in the comic web, where they are connected to the
environment and continuously accrete and feedback gas.

) There are currently two approaches in the community:

) Cosmological simulations rely on subgrid models tuned to reproduce
observations,

) small scale GRMHD simulations use idealized setups.



METHODS

) Make a selection of high mass TNG-50 halos

) Map TNG data to AthenaK's format

) Run at ever increasing zoom levels using Guo+ 2024 isolated M87 setup as baseline

GLOSSARY

® [llustris TNG - a suite of cosmological MHD simulations.

® Arepo - moving mesh MHD code used to run lllustrisTNG.

® AthenakK - block-based cartesian AMR framework with fluid, particle and numerical relativity solvers
in Kokkos (gpu accelerated).



HALO SELECTION #1

) Interested in only the most massive halos at high
resolution -> TNG-50.

> Focusing on halos M > 7 X 10'*M_limits us
to 30 halos.

) The halos need to be well resolved at smallr.

log 10 Number of Halos
o

Number of halos: 4e+406

M > 7x 10"*Mgy: 30

log;o(Maroup [Mo])

.12.

.14.



HALO SELECTION #2

) Some halos have very low number of cells at small r, as we are zooming into the
center, such halos are not suitable.
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HALO SELECTION #2

) Some halos have very low number of cells at small r, as we are zooming into the
center, such halos are not suitable.
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MAP TNG GALAXIES AS ICS FOR ATHENA RUNS

08}

lllustrisTNG data is an unstructured voronoi mesh

AthenakK uses a nested cartesian grid

Procedure:

1. Get all particles within ~50 kpc of halo center from TNG snap
2. (Construct a KdTree for fast neighbor search

3. Query the tree at Athena’s grid coords — 16M in ~10 seconds
4. Do this for density, momenta and total energy

vVvv

9 Note on magnetic field: Athena needs the vector potential A, wheré®|
B, use PYAMG to get A from B in the Lorentz gauge (future work) os|

0.4

027

06

041

NS

003.‘.38

| :".lb‘«

0"

1+t

O’

0.2 0.4

0.6

0.8




MAP TNG GALAXIES AS ICS FOR ATHENA RUNS

First attempt Second attempt
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SMOOTHING MAPPED DATA

) Voronoi cells imprints cause arbitrary shocks that artificially amplify the
initial relaxation.



SMOOTHING MAPPED DATA

) Voronoi cells imprints cause arbitrary shocks that artificially amplify the
initial relaxation.

) Smooth the ICs with an SPH kernel (the irony!)
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SETUP

) Halo in “hydrostatic equilibrium”.

) Gravitational potential defined by TNG's:
1. Central black hole,
2. NFW for dark matter, and
3. NFW for stars.

) Magnetic fields are initialized with a
Gaussian random vector potential at large scales

with 3 = 100.



SETUP

® Numerical details

) Halo in “hydrostatic equilibrium”.
® piecewise linear (PLM) reconstruction method,

) Gravitational potential defined by TNG's:
¢ HLLC Riemann solver,

1. Central black hole, ® the 2nd order Runge-Kutta time integration,

2. NFW for dark matter, and ® gravity, cooling, and heating included via operator
splitting,

3. NFW for stars.
® cooling by Schure et al. (2009) for solar metallicity,

) Magnetic fields are initialized with a and

Gaussian random vector potential at large scales
® jdealized phenomenological heating which balances

with / = 100. the global but not local cooling rates.



RUN THE SIMULATION
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NOW FOR SOME MOVIES!
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ACCRETION RATE VS TIME

) Mostly quick relaxation
at low zoom level (blue)

) Stable accretion at higher
zoom levels

) Halos 2 and 4 follow the
“classic” decreasing
accretion with increasing
zoom level

) Halos O and 3 don't

) TNG model’s accretion
rate is more on the low
side
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ACCRETION RATE VS INNER RADIUS

HalolD 0, Mgy = 8.5 x 10° Mo HalolD 3, Mgy = 2.0 x 10° M,
) Relationship between mass accretion rate and HalolD 2, Mgy = 3.7 X 109 M HalolD 4, Mgy = 7.1 X 108 M,
® ® ® Iog rin[pc]
inner radius for various runs. 3 -2 -1 0 1 2

1 1 1 I 1 1 1

9 Guo 2024 find a universal scaling of M o 72

) Cosmological ICs result in more complex halos do
not follow the scaling at certain zoom levels

logM [M o yr1]
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FUTURE PLANS

Extract magnetic fields from TNG,

use the actual star distribution instead of the NFW,

study the major accretion pathways of the “misbehaving” halos,
identify the main source of torque on the gas,

use Guo+ 2025b cyclic zoom approach to periodically zoom-in-
zoom-out - connect small scales to large ones and vice versa.
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logM[M yr~1]
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zone-7/

Figure 1. Schematics of the multi-zone method: the dif-
ferent colors represent the different zones being simulated.
Radii are shown along the y-axis, with zone ¢ extending from
an inner radius of 87, to an outer radius of 87 r,, where
r, = GM,/c? is the gravitational radius. Runtime is shown
along the x-axis (not to scale). The plot here corresponds to
one “V-cycle,” advancing the entire domain forward by some
time. A complete simulation consists of hundreds of V-cycles
to allow full information exchange between the smallest and
largest scales.



