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Accretion on SMBHs are a multi scale problem from the cosmological scale down to 
Schwarzschild radius ~ 14 orders of magnitude in spatial extent. 

We know halos do exist in the comic web, where they are connected to the 
environment and continuously accrete and feedback gas. 

There are currently two approaches in the community: 

Cosmological simulations rely on subgrid models tuned to reproduce 
observations, 

small scale GRMHD simulations use idealized setups.

MOTIVATION



Make a selection of high mass TNG-50 halos 

Map TNG data to AthenaK’s format 

Run at ever increasing zoom levels using Guo+ 2024 isolated M87 setup as baseline

METHODS

GLOSSARY
• Illustris TNG - a suite of cosmological MHD simulations. 

• Arepo - moving mesh MHD code used to run IllustrisTNG. 

• AthenaK - block-based cartesian AMR framework with fluid, particle and numerical relativity solvers 
in Kokkos (gpu accelerated). 



Interested in only the most massive halos at high 
resolution -> TNG-50. 

Focusing on halos limits us 
to 30 halos. 

The halos need to be well resolved at small r.

M > 7 × 1012M⊙

HALO SELECTION #1



Some halos have very low number of cells at small r, as we are zooming into the 
center, such halos are not suitable.
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IllustrisTNG data is an unstructured voronoi mesh

AthenaK uses a nested cartesian grid

Procedure: 
1. Get all particles within ~50 kpc of halo center from TNG snap

2. Construct a KdTree for fast neighbor search

3. Query the tree at Athena’s grid coords → 16M in ~10 seconds

4. Do this for density, momenta and total energy 

Note on magnetic field: Athena needs the vector potential A, where ∇xA = 
B, use PyAMG to get A from B in the Lorentz gauge (future work)
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MAPPED DATA



Voronoi cells imprints cause arbitrary shocks that artificially amplify the 
initial relaxation.
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Halo in “hydrostatic equilibrium”. 

Gravitational potential defined by TNG’s: 

1. Central black hole, 

2. NFW for dark matter, and 

3. NFW for stars. 

Magnetic fields are initialized with a  
Gaussian random vector potential at large scales 
with .β = 100

SETUP
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SETUP
• Numerical details 

• piecewise linear (PLM) reconstruction method, 

• HLLC Riemann solver, 

• the 2nd order Runge-Kutta time integration, 

• gravity, cooling, and heating included via operator 
splitting, 

• cooling by Schure et al. (2009) for solar metallicity, 
and 

• idealized phenomenological heating which balances 
the global but not local cooling rates. 
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NOW FOR SOME MOVIES!
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Relationship between mass accretion rate and 
inner radius for various runs.  

Guo 2024 find a universal scaling of  

Cosmological ICs result in more complex halos do 
not follow the scaling at certain zoom levels

·M ∝ r1/2
in
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• Extract magnetic fields from TNG, 

• use the actual star distribution instead of the NFW, 

• study the major accretion pathways of the “misbehaving” halos, 

• identify the main source of torque on the gas,  

• use Guo+ 2025b cyclic zoom approach to periodically zoom-in-
zoom-out - connect small scales to large ones and vice versa.

FUTURE PLANS








