THE SPATIAL VARIATIONS OF CIRCUM-GALACTIC GAS STRUCTURES IN HIGH RESOLUTION SIMULATIONS AND IN STATE-OF-THE-ART IFU OBSERVATIONS

RAMONA AUGUSTIN LEIBNIZ-INSTITUT FOR ASTROPHYSICS (AIP) POTSDAM

In collaboration with FOGGIE (PI: Peeples) and SPECMAP-CGM (PI: Wisotzki)

MOST ABSORBER-HOST RELATIONS RELY ON A SINGLE LOS

TWO TYPES OF SPATIAL VARIATIONS

Large scale azimuthal variations

Small scale clumpy gas structure

TWO TYPES OF SPATIAL VARIATIONS

30 kpc \subset Gas Metallicity [log Z $_{\odot}$] 25 (D)major axis Φ=0° \bigcirc \neg Péroux+2020

Large scale azimuthal variations

Small scale clumpy gas structure

LENSED AND EXTENDED OBJECTS REVEAL ABUNDANCE VARIATION ON SMALL (~KPC) SCALES IN THE CGM Augustin

Augustin et al. (2021)

Normal resolution

FOGGIE resolution

THE HIGH SPATIAL RESOLUTION IN FOGGIE REVEALS INDIVIDUAL KPC SCALE CLUMPS IN THE CGM

Augustin et al. (2025)

CLUMPS TAKE UP ONLY ~1% OF THE HALO VOLUME

But they host ~1/4 of the halo's HI mass

And have high covering fractions in projection

Peak mass of ~ $10^5 M_{\odot}$

Most clumps are found close to the galactic center

Ionisation gradient with density

Radial velocity gradient with density

Majority of clumps well embedded into environment

Metallicity bimodality

All clumps have lower metallicity than their environment

SMALL-SCALE STRUCTURES IN SIMULATIONS: TAKE-AWAYS

clump sphericalized radius [kpc]

- Most clumps are found close to the galactic center
 - more absorber components in the inner CGM
- Majority of clumps well embedded into environment
 - Longevity of CGM clumps
- All clumps have lower metallicity than their environment
 - Metals carried preferentially in the diffuse gas phase?

log clump masses [M₀]

Péroux+2020

Wendt+2021

Péroux+2020

Minor Axis

Péroux+2020

Adapted from Tumlinson, Peeples and Werk 2017

Péroux+2020

MUSE EXTREMELY DEEP FIELD (MXDF)

141-h adaptive-opticsassisted MUSEobservations in the HubbleUltra Deep Field1 arcmin in diameter

BACKGROUND SOURCE SELECTION

BACKGROUND SOURCE SELECTION

WORK IN PROGRESS

130 GALAXIES WITH MULTIPLE SIGHTLINES 35 GALAXIES AT Z<1 WITH 25+ SIGHTLINES

WORK IN PROGRESS

EXAMPLE FOR GALACTIC HALO AT Z=0.95

EXAMPLE FOR GALACTIC HALO AT Z=0.95

EXAMPLE FOR GALACTIC HALO AT Z=0.95

THE SPATIAL VARIATIONS OF CIRCUM-GALACTIC GAS STRUCTURES IN HIGH RESOLUTION SIMULATIONS AND IN STATE-OF-THE-ART IFU OBSERVATIONS

Large scale azimuthal variations

Galaxies show azimuthal variations of metal lines - Deep MUSE observations can be used to measure this distribution in individual halos!

Ramona Augustin, AIP

raugustin@aip.de

Small scale clumpy gas structure

Clumpy structures in simulations are clustering around the galaxy, well-embedded in their environment, and apparently metal-poor