## **INSIGHTS FROM QED SIMULATIONS**

Outflow properties and Metal Transport

Thinkshop: 13-18 July

## Aditi Vijayan

with Mark Krumholz, Ben Wibking



Australian National University



## **Multiphase Galactic Winds/Outflows**

HOT PHASE

CGM

(Circumgalactic Medium)

#### WARM PHASE

#### **COLD PHASE**

**GALACTIC WINDS** 



Gas collapse-> star formation-> Supernova

- "Momentum" or flux carrying phase loaded with metals
- Lx linked to stellar mass, SFR (e.g.- Zhang+24, Wang+16, Li&Wang2013)
- Metal gradients in outflows (e.g.-Lopez+20, Porraz Barrera+24, Lopez+23)



Ionised gas, UV emission/absorption Metal enrichment of outflows (Chisholm+17, Hamel-Bravo+24), outflow speed correlated with (s)SFR (Reichardt Chu+22), comprehensive reviews (Veilleux+05)

#### • Cool atomic molecular gas

 Few detections of the molecular phase (Martini+18, Leroy+15, Bolatto+13, Walter+17, Tchernyshyov2022, Di Teodoro +18,20), and Capucine's talk (Barferty+25)

plus all the info in Thorsten's and Matthew's review





## Fractional Flux of molecular gas

Vijayan&Krumholz24



## Loading factors of outflows

CGM

(Circumgalactic Medium)

#### **HOT PHASE**

#### WARM PHASE

#### **COLD PHASE**

**GALACTIC WINDS** 



Gas collapse-> star formation-> Supernova

## Outflow rate Injection Rate

Stellar mass-halo mass relation, cosmic star formation history (Lilly+2013, Dekel&Mandelkar2014)

 $\eta_M$ 

 $\eta_E$ 

**(**]'

Energy balance of the CGM (Suresh+2015, Li&Tonneson2020)

MMR and metal gradient in

**galaxies** (Peeples&Shankar2011, Forbes+2019, Sharda+2021a,b)

SILCC, TIGRESS/SMAUG, CGOLS, Rey+24, Steinwandel+24...



# Loading factors of outflower

(Circumgalactic Medium)

HOT PHASE

#### WARM PHASE

#### **COLD PHASE**

**GALACTIC WINDS** 

#### GALAXY

Gas collapse-> star formation-> Supernova



## Q. E. D. Suite of simulations



Vijayan+24,25

5



 GPU-accelerated code QUOKKA • 10 tall-box HD simulations • Uniform resolution, 2 pc Milky Way mass galaxy • Three different environments: 1. Solar neighbourhood  $(\Sigma_{gas})$ 2. Inner galaxy (  $\sim 4 \Sigma_{gas}$ ) 3. Outer galaxy ( ~ 0.2  $\Sigma_{\sigma as}$ )



## Q. E. D. Suite of simulations

- 1. Initially smooth density/ temperature profiles.
- $2.\Sigma_{gas} = 50, 13, 2.5 M_{\odot} pc^{-2}$
- 3.[x, y, z] = [1, 1, 8] kpc
- 4. Radiative Heating & Cooling through Grackle.
- 5. SN FB =>  $10^{51}$  erg of thermal energy.

3.0 Myr

 $10^{-1}$ 

 $10^{-}$ 

 $10^{-4}$ 

#### Column Density

Vijayan+24,25



## Q. E. D. Suite of simulations

Possible origin of clouds studied by Gronke, Alankar, Ritali 3.0 Myr

 $10^{-1}$ 

## $\langle Z \rangle_{\rm los}$

#### Column Density

Vijayan+24,25



## Insight 1: Loading factors respond to environment

# Stea

## HOT

- High SFR
- $\eta_M < 1$ , not multiphase
- High metal loading
- Eg- Inner galaxy



## MULTIPHASE • $\eta_M \sim 1$ • High metal loading • Eg – solar neighbourhood

# Outflows



## BURSTY

- Low SFR, low gas cooling
- $\eta_M < 1$
- $\eta_{7}, \phi \approx 0$
- Eg outer galaxy

#### Vijayan+25





## Insight 1: Loading factors respond to environment

- Different phase contribute differently
- Hot winds are hot, bursty winds are warm
- Hot/multiphase winds are thermal energy dominated Vijayan+25







SN go off in low density regions

### MULTIPHASE





Outflows entrain ISM

#### BURSTY

hgas  $h_{\rm SN}$  SN go off in dense regions





SN go off in low density regions

### MULTIPHASE





Outflows entrain ISM

#### BURSTY



SN go off in dense regions



## Insight 3: Metal loading varies with Z<sub>bg</sub>

\* $\zeta > 1$  means that outflowing gas more metals than expected from purely entrained ISM.

★Entrained metals contribute more if

$$Z_{\rm bg} \gtrsim 0.2 \ Z_{\odot}$$

 $\star \phi \simeq 0.8 \text{ means most SN} \\ \text{injected metals are lost to} \\ \text{outflows} \end{cases}$ 

Vijayan+24



## Insight 3: Metal loading varies with Z<sub>bg</sub>

- **★**Different phases are loaded differently with metals.
- ★Hot phase more metal enriched.
- **\***Loses metals to warmer phases during its trajectory.
- **\***Warm phase less enriched (eg in Ramona's talk)

Vijayan + 24

#### Metallicity in 1 kpc thick Sections vs Distance from Midplane





## Quokka (-based QED simulations) say(s) what!



Insight 3: Metal loading varies with  $Z_{bg}$ 

## Insight 1: Variety of Outflows





## Insight 2: Ratio of $h_{gas}$ to $h_{SN}$ drives the variety

