Constraining Cosmic Ray Feedback in Galaxy Evolution

Maria Werhahn

Rüdiger Pakmor, Volker Springel, Freeke van de Voort, Rebekka Bieri, Rosie Talbot, Christoph Pfrommer, Philipp Girichidis, Joseph Whittingham, Léna Jlassi, H.-H. Sandy Chiu

18th Potsdam Thinkshop, July 16 2025

MAX PLANCK INSTITUTE FOR ASTROPHYSICS

Maria Werhahn

Cosmic Rays in Galaxy Formation

Maria Werhahn

-> very challenging to model in galaxy simulations

simulations $\zeta_{\rm SN}, \kappa, \Lambda_{\rm CR}$ effective models

varying impact on galaxy formation

(e.g. Jubelgas+ 2008; Uhlig+ 2012; Booth+ 2013; Hanasz+2013; Salem & Bryan 2014; Pakmor+ 2016; 2017; Jacob+ 2018; Dashyan & Dubois 2020; Salem+ 2014; Buck+ 2020; , Armillotta+ 2021; Hopkins+ 2020,2022; Peschken+ 2021; Girichidis+ 2022, 2024; Thomas+ 2023;2024; Rodríguez Montero+ 2024,...)

- \bullet

Maria Werhahn

outflows, regulating star formation

• impact on reionisation (Farcy et al. 2025)

• morphology, gas radii (e.g. Buck+2020)

• CGM properties (density, temperature,

metallicity, B-field) (e.g. Salem 2016, Ji+2020, Butsky 2022)

Maria Werhahn

varying impact on galaxy formation

(e.g. Jubelgas+ 2008; Uhlig+ 2012; Booth+ 2013; Hanasz+2013; Salem & Bryan 2014; Pakmor+ 2016; 2017; Jacob+ 2018; Dashyan & Dubois 2020; Salem+ 2014; Buck+ 2020; , Armillotta+ 2021; Hopkins+ 2020,2022; Peschken+ 2021; Girichidis+ 2022, 2024; Thomas+ 2023;2024; Rodríguez Montero+ 2024,...)

• outflows, regulating star formation

• impact on reionisation (Farcy et al. 2025)

• morphology, gas radii (e.g. Buck+2020)

• CGM properties (density, temperature,

metallicity, B-field) (e.g. Salem 2016, Ji+2020, Butsky 2022)

Maria Werhahn

varying impact on galaxy formation

(e.g. Jubelgas+ 2008; Uhlig+ 2012; Booth+ 2013; Hanasz+2013; Salem & Bryan 2014; Pakmor+ 2016; 2017; Jacob+ 2018; Dashyan & Dubois 2020; Salem+ 2014; Buck+ 2020; , Armillotta+ 2021; Hopkins+ 2020,2022; Peschken+ 2021; Girichidis+ 2022, 2024; Thomas+ 2023;2024; Rodríguez Montero+ 2024,...)

outflows, regulating star formation

• impact on reionisation (Farcy et al. 2025)

• morphology, gas radii (e.g. Buck+2020)

• CGM properties (density, temperature,

metallicity, B-field) (e.g. Salem 2016, Ji+2020, Butsky 2022)

 $\log_{10}(M_{200c}/{
m M}_{\odot}) = 12.0$ $\log_{10}(M_{200c}/M_{\odot}) = 13.0$

Maria Werhahn

varying impact on galaxy formation

(e.g. Jubelgas+ 2008; Uhlig+ 2012; Booth+ 2013; Hanasz+2013; Salem & Bryan 2014; Pakmor+ 2016; 2017; Jacob+ 2018; Dashyan & Dubois 2020; Salem+ 2014; Buck+ 2020; , Armillotta+ 2021; Hopkins+ 2020,2022; Peschken+ 2021; Girichidis+ 2022, 2024; Thomas+ 2023;2024; Rodríguez Montero+ 2024,...)

• outflows, regulating star formation

• impact on reionisation (Farcy et al. 2025)

• morphology, gas radii (e.g. Buck+2020)

• CGM properties (density, temperature,

metallicity, B-field) (e.g. Salem 2016, Ji+2020, Butsky 2022)

CR protons:

 $\pi^0 \longrightarrow 2\gamma$ pion decay \bullet secondary π^{\pm} μ^{\pm} e^{\pm}

Maria Werhahn

CR electrons (primary + secondary):

- Synchrotron emission
- \overrightarrow{R}
- Inverse Compton (IC) emission fun and
- Bremsstrahlung

star formation

acceleration of CRs

Maria Werhahn

Observational Constraints of CRs

Non-thermal emission

Scheel-Platz+ (2023)

of CRs

star formation

transport/interaction with the ISM

FIR-radio relation

(van der Kruit 1971; Condon 1992; Yun+2001; Bell 2003,Molnár 2021, Heesen+2022, Jin+2025)

Maria Werha

acceleration

Observational Constraints of CRs

Non-thermal emission

IR Luminosity (L $_{\odot}$)

Modelling CR spectra & emission with crayon+ from MHD simulation

crayon+

modelling of CR proton, primary and secondary electron spectra

Maria Werhahn

Werhahn et al. (2021 a)

Cosmic RAY emissiON + more :)

calculation of radiation processes

low SFR: sensitive to CR transport —> constrain κ

Werhahn et al. (2021b)

Maria Werhahn

Gamma-ray emission

high SFR: close to calorimetric limit (complete conversion to γ -rays) -> constrain ζ_{SN}

Maria Werhahn

Gamma-ray emission

• changes spatially resolved high-energy gamma-ray emission

• global spectra & luminosities: close to grey+steady-state

Maria Werhahn

Gamma-ray emission

 10^{27}

steady on spec

 10^{3}

steady – state

 10^{26}

 10^{2}

Gamma-ray emission

Maria Werhahn

Radio emission

synchr. spectra (IC & synchr.

Werhahn et al. (2021c)

Polarised radio emission

from a CRISPy galaxy

- galaxy simulation with CRISP (Thomas et al. 2024), including 2-moment CR transport and more detailed ISM model
- crayon+: model electron spectra & (polarised) radio emission -> compare to edge-on radio observations of NGC 4217 (Stein et al. 2020)
- X-shaped B-field morphology recovered
- shape of the vertical profile: robustly predicted

Maria Werhahn

Radio Synchrotron Morphology, Spectra, and Polarization of Cosmic Ray Driven Galactic Winds H.-H. Sandy Chiu, Mateusz Ruszkowski, Timon Thomas, Maria Werhahn, and Christoph Pfrommer

Introductio

Conclusion 1: Our simulated emission maps match observations provided that the difference of SFR between the observed and simulated galaxy is considered. The shapes of intensity profiles are insensitive to the normalization of the CR electron spectrum, magnetic field and the assumed distance of the simulated galaxy

see poster *by H.-H. Sandy Chiu*!

Maria Werhahn

Open questions

Werhahn et al. (2021c)

Cosmological zoom simulations

Auriga zoom simulations with CRs (Bieri, [...], Werhahn+ in prep)

- $M_{200} = 10^{10} 10^{13} \,\mathrm{M_{\odot}}$
- with grey CRs (Alfvén cooling, anisotropic diffusion)
- crayon+: CR spectra & emission
- ✓ more realistic environment and star-formation history
- ✓ study isolated dwarfs vs. satellites

with CRs

satellite in a $10^{12} \,\mathrm{M_{\odot}}$ halo

stronger B-fields in satellites, particularly after close encounter with host

Maria Werhahn

Cosmological zoom simulations

B-field amplification

Werhahn et al. 2025

Cosmological zoom simulations B-field amplification

stronger B-fields in satellites, particularly after close encounter with host

with CRs

CREST - CR electron spectra evolved in time

Maria Werhahn

CREST (Winner+2019) further development by Joseph Whittingham, Léna Ljassi & me

- post-processing MHD simulations: \bullet solve Fokker-Planck equation on Lagrangian tracer particles
- accurate calculation of CR electron spectra as function of time and space
- coupled to crayon+ for calculation of radiation processes

CREST - CR electron spectra evolved in time

Maria Werhahn

Are galaxies in a steady-state?

CREST (Winner+2019) further development by Joseph Whittingham, Léna Ljassi & me

- post-processing MHD simulations: \bullet solve Fokker-Planck equation on Lagrangian tracer particles
- accurate calculation of CR electron spectra as function of time and space
- coupled to crayon+ for calculation of radiation processes
- *global* spectrum: very close to steadystate
- many *local* variations (outflows, \bullet regions of strong cooling/no recent injection)

very close to steady-state!

strongly cooled spectra

Werhahn et al. in prep.

CREST - CR electron spectra evolved in time

Maria Werhahn

Summary

Steady-state CR spectra in MHD simulations:

- Gamma-ray emission: - low SFR: diffusion relevant; high SFR: close to calorimetric limit
- **Radio emission**: FIR-radio relation is dominated by primary emission - steep spectra due to IC & sync. losses—> flat radio spectra: thermal contribution

Spectral simulations of CR protons

• required for modelling of spatially resolved high-energy gamma-rays

Radio emission from galaxy with two-moment CR transport (CRISP):

• X-shaped morphology in B-field direction due to galactic-scale outflows

CRs in cosmological zoom simulations

• stronger B-fields in satellites vs. isolated dwarfs -> affects correlations of non-thermal emission with SFR

Live electrons with CREST: global spectra close to steady-state

• strongest differences: in outflows and gamma-ray maps

Maria Werhahn

0.7

centrals

 10^{2}

0.6

