

How magnetic fields alter feedback and angular momentum transfer in MW-like galaxies

Joseph Whittingham

A A A A A A A A A A A A

and a part of the second states

arXiv: 2011.13947 2301.13208

Magnetic fields change disc galaxies

MHD galaxies:

- Larger radius
- Flocculent spirals

Hydro galaxies:

- Larger bars
- Ring structures

Mock stellar light images from Auriga (re-)sims at z=0

Magnetic fields change disc galaxies

MHD galaxies:

- Larger radius
- Flocculent spirals

Hydro galaxies:

- Larger bars
- Ring structures

Effect excited by gas-rich *mergers*!

Mock stellar light images from Auriga galaxy merger *sims at z=0*

Why mergers?

Sustained amplification by up to an order of magnitude for a few Gyr

Dashed black lines: start of merger

Why mergers?

Sustained amplification by up to an order of magnitude for a few Gyr

Dashed black lines: start of merger

Magnetic energy can dominate over thermal energy

Why mergers?

Dashed black lines: start of merger

Magnetic energy can dominate over thermal energy

Orange: MHD Blue: Hydro

Joseph Whittingham / AIP 2025

Different merger scenarios

	0^{1} 0^{0} 0^{-}	$\varepsilon_{ m mag} \ / \ \varepsilon_{ m therm}$
Ratio of azimuthal-to-	total magnetic energy	in disc
Total ang. mom. within	10kpc of galaxy	(Blue: Hydro. Ornge: MHD)

Magnetic field typically non-azimuthal when amplified

Orange: MHD Blue: Hydro

Joseph Whittingham / AIP 2025

Different merger scenarios

	0^{1} 0^{0} 0^{-}	$\varepsilon_{ m mag} \ / \ \varepsilon_{ m therm}$
Ratio of azimuthal-to-	total magnetic energy	in disc
Total ang. mom. within	10kpc of galaxy	(Blue: Hydro. Ornge: MHD)

Magnetic field typically non-azimuthal when amplified

→ efficient ang. mom. transport!

Orange: MHD Blue: Hydro

Joseph Whittingham / AIP 2025

Different merger scenarios

10 ¹ 10 ⁰	$\varepsilon_{ m mag} \ / \ arepsilon_{ m therm}$
Ratio of azimuthal-to- total magnetic energy	in disc
Total ang. mom. within 10kpc of galaxy	(Blue: Hydro. Ornge: MHD)

Magnetic field typically non-azimuthal when amplified

→ efficient ang. mom. transport!

First shrinks disc... ... before growing it quickly!

Orange: MHD Blue: Hydro

Different merger scenarios

10 ¹ 10 ⁰	$\varepsilon_{ m mag} \ / \ arepsilon_{ m therm}$
Ratio of azimuthal-to- total magnetic energy	in disc
Total ang. mom. within 10kpc of galaxy	(Blue: Hydro. Ornge: MHD)

Magnetic field typically non-azimuthal when amplified

→ efficient ang. mom. transport!

First shrinks disc... ... before growing it quickly!

(not seen in 3rd scenario, where the ang. mom. of progenitors align)

10.07.5Radius [kpc] 5.0 -2.5 0.0 0.8 $\varepsilon_{\mathrm{mag},\phi}/\varepsilon_{\mathrm{mag,tot}}$ 0.60.4 0.2 kpc km s^{-1} $L_{\rm tot} (\leq 10 \rm kpc)$ 3. $[10^{13} M_{\odot}]$ 2mom Ang. 0^{+}_{7} 5 Lookback time [Gyr]

Orange: MHD Blue: Hydro

Different merger scenarios

10 ¹ 10 ⁰	$\varepsilon_{ m mag} \ / \ arepsilon_{ m therm}$
Ratio of azimuthal-to- total magnetic energy	in disc
Total ang. mom. within 10kpc of galaxy	(Blue: Hydro. Ornge: MHD)

Magnetic fields act to increase:

• Central gas densities

Orange: MHD Blue: Hydro

Different merger scenarios

Magnetic fields act to increase:

- Central gas densities
- Black hole accretion —>

Orange: MHD Blue: Hydro

Different merger scenarios

Magnetic fields act to increase:

- Central gas densities
- Black hole accretion —>
- Black hole masses!

Orange: MHD Blue: Hydro

Different merger scenarios

Magnetic fields act to increase:

- Central gas densities
- Black hole accretion —>
- Black hole masses!

 $\dot{E} = \epsilon_{\rm f} \epsilon_{\rm r} \dot{M}_{\rm BH} c^2$

Increased AGN feedback!

Orange: MHD Blue: Hydro

Different merger scenarios

The impact of the SMBH (is surprisingly weak!)

Ran two extra simulations with quasar feedback turned off at start of merger

See same morphological changes anyway; in fact, differences are bigger without AGN feedback!

AGN appears to suppress effect rather than cause it.

+1.7 Gyr

+3.1 Gyr

-15150 $x \; [\mathrm{kpc}]$

+6.4 Gyr

-15150 $x \; [
m kpc]$

Orange: MHD **Blue:** Hydro

Blue: Hydro

... increases the subsequent stellar concentration

Larger barrier to avoid inner Lindblad resonance (ILR)

Orange: MHD Blue: Hydro

... increases the subsequent stellar concentration

Larger barrier to avoid inner Lindblad resonance (ILR)

A large ILR suppresses bar formation

- " x_2 " orbits exist within ILR and are aligned orthogonally to bar, acting against it

 $+0.3 \mathrm{~Gyr}$ 10^{-22} - $\sum_{\substack{i \\ bill \\ bill \\ c}} 10^{-23}$ 10^{-25} 10^{-26} Stars ____ mass $[M_{\odot}]$ ······ Gas 10^{10} 100 $[\rm km~s^{-1}~kpc^{-1}]$ 75 $50 \cdot$ 1 C_{1} 250. 2.5 7.5 $\left(\right)$ 5 $r \; [\mathrm{kpc}]$

Orange: MHD Blue: Hydro

Two other important resonances: co-rotation, and outer Lindblad (OLR)

Key formula:

$$\Omega = \upsilon_{\rm circ} / r$$

$$\kappa^2 = 2\Omega \left(\Omega + \frac{\mathrm{d}\upsilon_{\rm circ}}{\mathrm{d}r} \right)$$

Two other important resonances: co-rotation, and outer Lindblad (OLR)

Key formula:

$$\Omega = \upsilon_{\rm circ} / r$$

$$\kappa^2 = 2\Omega \left(\Omega + \frac{\mathrm{d}\upsilon_{\rm circ}}{\mathrm{d}r} \right)$$

Intersection of bar pattern frequency and resonant profiles gives (radial) position of resonances

Two other important resonances: co-rotation, and outer Lindblad (OLR)

Key formula:

$$\Omega = \upsilon_{\rm circ} / r$$

$$\kappa^2 = 2\Omega \left(\Omega + \frac{\mathrm{d}\upsilon_{\rm circ}}{\mathrm{d}r} \right)$$

Intersection of bar pattern frequency and resonant profiles gives (radial) position of resonances

Joseph Whittingham / AIP 2025

Two other important resonances: co-rotation, and outer Lindblad (OLR)

Key formula:

$$\Omega = \upsilon_{\rm circ} / r$$

$$\kappa^2 = 2\Omega \left(\Omega + \frac{\mathrm{d}\upsilon_{\rm circ}}{\mathrm{d}r} \right)$$

Intersection of bar pattern frequency and resonant profiles gives (radial) position of resonances

Two other important resonances: co-rotation, and outer Lindblad (OLR)

Key formula:

$$\Omega = \upsilon_{\rm circ} / r$$

$$\kappa^2 = 2\Omega \left(\Omega + \frac{\mathrm{d}\upsilon_{\rm circ}}{\mathrm{d}r} \right)$$

Intersection of bar pattern frequency and resonant profiles gives (radial) position of resonances

Bar acts to drive gas away from co-rotation resonance and towards ILR and OLR (as expected from theory!)

Results in high gas density → high SFR density!

Bar acts to drive gas away from co-rotation resonance and towards ILR and OLR (as expected from theory!)

Results in high gas density → high SFR density!

Increased stellar feedback!

Impact of ...increased stellar feedback in hydro

Winds in hydro run severely disrupts the local CGM

- Accreting gas must have a strong radial component
- Galaxy stays compact

Edge-on slice showing gas velocity

 \boldsymbol{v} [km s⁻¹]

 10^{2}

Face-on slice showing gas velocity

Impact of ... increased AGN feedback in MHD

Winds in hydro run severely disrupts the local CGM

- Accreting gas must have a strong radial component
- Galaxy stays compact

Star formation is more distributed in MHD sims

- Stellar wind is weaker
- AGN is less disruptive
- Gas at the outskirts retains its ang. mom.

Edge-on slice showing gas velocity

 \boldsymbol{v} [km s⁻¹]

 10^{2}

Face-on slice showing gas velocity

 10^{3}

Impact of ...increased AGN feedback in MHD

Winds in hydro run severely disrupts the local CGM

- Accreting gas must have a strong radial component
- Galaxy stays compact

Star formation is more distributed in MHD sims

- Stellar wind is weaker
- AGN is less disruptive
- Gas at the outskirts retains its ang. mom.

Wider impact on the CGM!

Credit: van de Voort, et al. (2021)

Impact of ...increased AGN feedback in MHD

Winds in hydro run severely disrupts the local CGM

- Accreting gas must have a strong radial component
- Galaxy stays compact

Star formation is more distributed in MHD sims

- Stellar wind is weaker
- AGN is less disruptive
- Gas at the outskirts retains its ang. mom.

Wider impact on the CGM!

Credit: van de Voort, et al. (2021)

Application to other physics models?

Tuning feedback parameters in Auriga ruled out

Different SFR/ AGN impacts checked

Feedback tends to suppress accretion of high ang. mom. gas

- ...but magnetic fields can bring it into the galaxy
- Shrink disc before growing it substantially

Depends on strong enough magnetic fields!

Bar and ring galaxies produced in original Illustris --->

Nice spirals in Illustris TNG

Credits: https://www.illustris-project.org/media/ https://ras.ac.uk/media/361

Conclusions

Magnetic fields

- change the morphology of disc galaxies in Auriga ...by
 - typically *increasing central gas density*
 - fuelling *black hole growth*
 - suppressing *bar formation*
 - changing *feedback channel* from stellar to AGN!

arXiv: 2011.13947 2301.13208

Conclusions

Magnetic fields

- change the morphology of disc galaxies in Auriga ...by
 - typically *increasing central gas density*
 - fuelling *black hole growth*
 - suppressing *bar formation*
 - changing *feedback channel* from stellar to AGN!

arXiv: 2011.13947 2301.13208

Mergers amplify magnetic fields, but...

Sufficient resolution is required to realise the effect

Mean radial magnetic field strength in the disc as a function of time (Resolution becomes finer left to right)

Mergers amplify magnetic fields, but...

Sufficient resolution is required to realise the effect

Originates from the need to resolve sufficiently small-scale eddies

(i.e. to realise a small-scale) dynamo!)

Mean radial magnetic field strength in the disc as a function of time (Resolution becomes finer left to right)

Impact of resolution?

 $m_{\rm DM} = 4.4 \times 10^6 \ {\rm M}_{\odot}$

Increasing resolution ---->

 $m_{\rm DM} = 5.5 \times 10^5 {\rm M}_{\odot}$

 $m_{\rm DM} = 1.6 \times 10^5 \ {\rm M}_{\odot}$

What about our MHD solver?

Divergence is:

- Low in disc
- Uncorrelated spatially and temporally

Relative divergence globally low (<0.5%)

Time post-merger

+2 Gyr $+1 \mathrm{Gyr}$ +3 Gyr And a stand of the second of the

Joseph Whittingham / AIP 2025

100kpc of the main progenitor!

Using all cells within

Further evidence of angular momentum transfer

Edge-on mock gri visual image from stellar light for 1349-3M and 1349-3H

Gas accretes with (initially) different alignment in MHD case → new stellar disc forms misaligned to old population

Further evidence of angular momentum transfer

Angular momentum transfer speeds up merger (most effective when merger is "in-spiralling")

