Regulation of star formation in low-metallicity galaxies by feedback and turbulence

Ava Polzin with Andrey Kravtsov, Vadim Semenov, and Nick Gnedin

18th Potsdam Thinkshop July 17, 2025

avapolzin.github.io apolzin@uchicago.edu

Classical picture of SF in galaxies Feedback, turbulence encoded in ISM + regulates SF

Ava Polzin, Potsdam Thinkshop July 2025

HabEx Final Report

A key part of the parameter space Local dwarfs + high redshift galaxies are low Z

State-of-the-art simulations Reproducing H₂ distribution and SF in nearby low Z dwarfs

- High resolution (~10) pc), realistic simulation (Semenov+21)
- SF (and so feedback) not based on H_2 self-consistent modeling of hydrodynamics, UV radiative transfer
- Recover detailed SF properties observed in local dwarf galaxies

Virial parameter-based SF Flexible, varies with gas properties, + not tuned

- Stochastic star formation set by star formation efficiency per free-fall time
- Fraction of gas forming stars set by gas motions, gas density, cell size
- Feedback + turbulence encoded in ISM behavior

$$\dot{\rho_{\star}} = \epsilon_{\rm ff} \frac{\rho_{\rm gas}}{t_{\rm ff}}$$

$$\epsilon_{\rm ff} pprox e^{-\sqrt{\alpha_{\rm vir}/0.53}}$$
Padoan+12

$$\alpha_{\rm vir} = \frac{9.35 \, (\sigma_{\rm tot}/100 \, \rm km \, s^{-1})}{(n/100 \, \rm cm^{-3}) \times (\Delta x/40 \, \rm pc)}$$

Bertoldi & McKee 92

Calibrating on an isolated disk Simulating galaxies at low metallicity

Polzin+24a, arXiv:2310.10712

Ava Polzin, Potsdam Thinkshop July 2025

- Run at fixed Z, evenly log-spaced $0.01 - 1 Z_{\odot}$, leaving all other physics the same
- Changes in ISM structure with metal abundance
- Changes in atomic/molecular fraction with metal abundance

H₂ should be less abundant at low Z

- At typical GMC densities ($n_H \sim 50$ cm⁻³), H₂ formation time is comparable to lifetime of star forming regions at ~0.1 Z_{\odot}
- At lower Z, H₂ abundances drop dramatically
- HI-H₂ models for metal-rich gas will overpredict H₂ at low Z

Metal-rich models won't apply properly to this regime

Krumholz 12

Isolating the role of metallicity Predictions from a suite of realistic simulations

hydrogen number density

Capturing the Z, U-dependences Accurate HI-H₂ transition location and max f_{H2}

hydrogen number density

Accurately model H₂ in low Z regime Good for recovering HI + H₂ masses!

- Simple functional form, dependent on n_H, radiation field strength, and gas metallicity
- Recovers H₂ mass to within factor of 1.25 (1.5) across metallicitie (and scales)
- No assumptions of chemical equilibrium etc.

H₂ abundance and SF decouple ... so H₂ should not be used in SF prescriptions

- SF and H₂ abundance decouple at low metallicity
- Stars form out of cold, dense gas generally in absence of molecular gas

SFR lower in low Z runs due to less cold, dense gas

H₂ abundance and SF decouple ... so H₂ should not be used in SF prescriptions

- Star-forming gas is ~uniformly efficient, regardless of metallicity
- On small scales, SFE set by turbulence and feedback, not H₂ fraction

Accurate SFEs across conditions Modeling star formation directly for low Z galaxies

 ϵ_{ff}

 $t_{\rm ff} \, (\rm Myr)$

 $/\epsilon_{\mathrm{ff}} \; (\mathrm{Myr})$

 $\stackrel{\scriptstyle \sim}{\underset{\scriptstyle \downarrow}{\boxplus}} 10^2$ e

 10^{-10}

 10^{-2}

 10^{4}

 10^{-2}

- Little dependence on Z , U, or Σ ; universality of $\epsilon_{\rm ff}$ on galaxy scales (+ smaller) with no tuning
- Similarly, SFE not tied to H₂ abundance
- Preparing a cell-bycell model of star forming gas fraction + timescale

 $- = 2 = 0.01 \text{ Z}_{\odot} \qquad - = 2 = 0.10 \text{ Z}_{\odot} \qquad - = 2 = 0.30 \text{ Z}_{\odot} \qquad - = 2 = 1.00 \text{ Z}_{\odot}$ $- = 2 = 0.03 \text{ Z}_{\odot} \qquad - = 2 = 0.20 \text{ Z}_{\odot} \qquad - = 2 = 0.60 \text{ Z}_{\odot} \qquad - = 2 = 0.60 \text{ Z}_{\odot}$ $- = 2 = 0.00 \text{ Z}_{\odot} \qquad - = 2 = 0.00 \text{ Z}_{\odot}$ $- = 2 = 0.00 \text{ Z}_{\odot} \qquad - = 2 = 0.00 \text{ Z}_{\odot}$ $- = 2 = 0.00 \text{ Z}_{\odot}$ $- = 2 = 0.00 \text{ Z}_{\odot} \qquad - = 2 = 0.00 \text{ Z}_{\odot}$

Polzin+24c, arXiv:2407.11125

Non-turbulent re-simulation Role of thermal vs. turbulent motions in the ISM

- Use Padoan+12 model for subgrid turbulence as default — based on virial parameter, where $\sigma_{tot} = \sqrt{\sigma_t^2 + c_s^2}$
- Turn off turbulence which redefines $\sigma_{tot} = c_s$

$$\epsilon_{\rm ff} pprox e^{-\sqrt{\alpha_{\rm vir}/0.53}}$$
Padoan+12

$$\alpha_{\rm vir} = \frac{9.35 \, (\sigma_{\rm tot}/100 \, \rm km \, s^{-1})}{(n/100 \, \rm cm^{-3}) \times (\Delta x/40 \, \rm pc)}$$

Bertoldi & McKee 92

Non-turbulent re-simulation Role of thermal vs. turbulent motions in the ISM

Non-turbulent re-simulation Role of thermal vs. turbulent motions in the ISM

Note different axis scales!

Quick summary SF regulated by turbulent compression + dispersive feedback

