

Turbulence Drivers in Quasar Halos

Mandy Chen

Carnegie Observatories & Caltech 18 July 2025, 18th Potsdam Thinkshop

How to measure turbulence?

b_{non-thermal}

(QSO absorption line+ionization modeling)

Hsiao-Wen Chen's talk on Tuesday

$\sigma_{ m Hlpha}$

(In expanding superbubbles)

Oleg Egorov's talk on Tuesday

How to measure turbulence in spatially-resolved, individual sources?

Kinetic energy budget, turbulence cascade, driving mechanism, stellar/AGN feedback, etc.

Caltech

CARNEGIE SCIENCE

QSO halo at z=0.57, [OIII] emission seen in VLT/MUSE data

$1' \approx 400 \,\mathrm{kpc} \,@\,z = 0.57$

(MC+2023)

CARNEGIE SCIENCE Caltech

(Wylezalek+2022)

(Veilleux + 2023)

MUSE: [OII] and [OIII] emission at $z \approx 0.5$ —1.1

- Sample compiled from:
- Independent program by PI Celine Péroux
- The Cosmic Ultraviolet Baryon Survey (CUBS) PI Hsiao-Wen Chen
- MUSE Quasar-field Blind Emitter Survey (MUSEQuBES) **PI Joop Schaye**

JWST/NIRSpec IFU: [OIII] emission at $z \approx 1.6$ —3

Q3D JWST ERS Program PI Dominika Wylezalek

(MC+2023)

CARNEGIE SCIENCE Caltech

(Wylezalek+2022)

(Veilleux+2023)

MUSE: [OII] and [OIII] emission at $z \approx 0.5$ —1.1

- Sample compiled from:
- Independent program by PI Celine Péroux
- The Cosmic Ultraviolet Baryon Survey (CUBS) PI Hsiao-Wen Chen
- MUSE Quasar-field Blind Emitter Survey (MUSEQuBES) PI Joop Schaye

JWST/NIRSpec IFU: [OIII] emission at $z \approx 1.6$ —3

Q3D JWST ERS Program PI Dominika Wylezalek

Using MUSE to trace the cool ($T \sim 10^4 \,\mathrm{K}$) gas up to $\approx 100 \,\mathrm{kpc}$ around QSOs at *z*≈0.5—1.1

MUSEQuBES, PI: J. Schaye

(MC+2023, 2024)

 $v(x+r)|^2$ $\langle \chi \rangle \langle \chi \rangle$

 $\nu(x+r)|^2$ $\langle \chi \rangle \langle \chi \rangle$

 $\nu(x+r)|^2$ $(x) \wedge | \rangle$

 $\nu(x+r)|^2$ $\langle \chi \rangle \langle \chi \rangle$

 $\nu(x+r)|^2$ $(x) \wedge | \rangle$

 $\nu(x+r)|^2$ $(x)_{\mathcal{N}} \rangle$

A system with Kolmogorov slope

2nd-order VSF consistent with subsonic motions

2nd-order VSF consistent with subsonic motions

(MC+2024)

2/3 (PSF convolved)
 2/3 (no PSF)
 1 (no PSF)
 PKS0454-22
 PKS0405-123 S
 PKS0405-123 E
 PKS0552-640
 TXS0206-048

□ HE0238-1904 ◇ J0454-6116 ◆ J2135-5316

Slopes: consistent with or flatter than Kolmogorov

CARNEGIE SCIENCE

Caltech

(Faucher-Giguère & Oh, 2023)

- hot phase (in contrast, sound speed $\approx 15 \,\mathrm{km/s}$ for cool phase) $Mach_{cool} \approx 7 - 18 \text{ vs } Mach_{hot} \approx 0.2 - 1.8$
- $\dot{E} \sim 10^{44} \,\mathrm{erg}\,\mathrm{s}^{-1}$ within 50 kpc, $\sim 0.05 \,\% \, L_{\mathrm{bol,QSO}}$

(Faucher-Giguère & Oh, 2023)

- hot phase (in contrast, sound speed $\approx 15 \,\mathrm{km/s}$ for cool phase) $Mach_{cool} \approx 7 - 18 \text{ vs } Mach_{hot} \approx 0.2 - 1.8$
- $\dot{E} \sim 10^{44} \,\mathrm{erg}\,\mathrm{s}^{-1}$ within 50 kpc, $\sim 0.05 \,\% \,L_{\mathrm{bol,OSO}}$
- No clear detection of flattening at large scales (i.e., energy injection); turbulence is likely driven by large-scale interactions (e.g., galaxy mergers)

(Faucher-Giguère & Oh, 2023)

(MC + 2023)

CARNEGIE SCIENCE Caltech

(Wylezalek+2022)

(Veilleux + 2023)

MUSE: [OII] and [OIII] emission at $z \approx 0.5$ —1.1

- Sample compiled from:
- Independent program by PI Celine Péroux
- The Cosmic Ultraviolet Baryon Survey (CUBS) PI Hsiao-Wen Chen
- MUSE Quasar-field Blind Emitter Survey (MUSEQuBES) **PI Joop Schaye**

JWST/NIRSpec IFU: [OIII] emission at $z \approx 1.6$ —3

Q3D JWST ERS Program PI Dominika Wylezalek

Q3D JWST Early **Release Science Project** (Wylezalek+2022, Vayner+2023, Veilleux+2023, Vayner+2024)

CARNEGIE SCIENCE Caltech

(MC+2025)

- VSF is a powerful tool in providing direct, scaledependent constraints on turbulence
- At the current moment, there remains systematics to be further investigated

- VSFs' interpretive power increases significantly when paired with:
 - Simulations and forward modeling
- Other diagnostics for shocks/density/ ionization

