Variability in the UVLF: Connecting Stellar Feedback and Bright Galaxies

Arghyadeep Basu Max Planck Institute for Astrophysics (MPA), Garching

- With Aniket Bhagwat, Benedetta Ciardi, Tiago Costa -

arXiv:2501.18559 (in review)

MAX PLANCK INSTITUTE FOR ASTROPHYSICS

Potsdam Thinkshop - July 2025

Thanks to everyone of you 🥩

The role of feedback in galaxy formation: from small-scale winds to large-scale outflows

For discussing about cosmic ray, impact of feedbacks, turbulence... and many more xD

Illustration: NASA

A highly magnified candidate for a young galaxy seen when the Universe was 500 Myrs old

Wei Zheng¹, Marc Postman², Adi Zitrin³, John Moustakas⁴, Xinwen Shu⁵, Stephanie Jouvel^{6,7}, Ole Host⁶, Alberto Molino⁸, Larry Bradley², Dan Coe², Leonidas A. Moustakas⁹, Mauricio Carrasco¹⁰, Holland Ford¹, Narciso Benítez⁸, Tod R. Lauer¹¹, Stella Seitz¹², Rychard Bouwens¹³, Anton Koekemoer², Elinor Medezinski¹, Matthias Bartelmann³, Tom Broadhurst¹⁴, Megan Donahue¹⁵, Claudio Grillo¹⁶, Leopoldo Infante¹⁰, Saurabh Jha¹⁷, Daniel D. Kelson¹⁸, Ofer Lahav⁶, Doron Lemze¹, Peter Melchior¹⁹, Massimo

Meneghet

der Wel²⁴

JWST/MIRI photometric detection a in a galaxy at z > 14

lensing cluster SMACS0723

Hakim Atek[®],¹* Marko Shuntov,¹ Lukas J. Furtak[®],² Johan Richard[®],³ Jean-Paul Kneib,⁴ Guillaume Mahler[®],⁵ Adi Zitrin[®],² H. J. McCracken,¹ Stéphane Charlot,¹ Jacopo Chevallard^{®6} and Iryna Chemerynska¹

Jakob M. Helton^{1*}, George H. Rieke¹, Stacey Zihao Wu², Daniel J. Eisenstein², Kevin N. Stefano Carniani³, Zhiyuan Ji¹, William M. Baker^{4,5}, Rachana Bhatawdekar⁶, Andrew J. Bunker⁷, Phillip A. Cargile², Stéphane Charlot⁸, Jacopo Chevallard⁷, Francesco D'Eugenio^{4,5}, Eiichi Egami¹, Benjamin D. Johnson², Ga Jianwei Lyu¹, Roberto Maiolino^{4,5,9}, Pablo G Marcia J. Rieke¹, Brant Robertson¹¹, Aay Jan Scholtz^{4,5}, Irene Shivaei¹⁰, Feng Sandro Tacchella^{4,5}, Lily Whitler¹, Christin Christopher N. A. Willmer¹, Chris Willott¹³, Yongda Zhu¹

Rohan P. Naidu^{1,2,26}, Pascal A. Oesch^{3,4}, Pieter van Dokkum⁵, Erica J. Nelson⁶, Katherine A. Suess^{7,8}, Gabriel Brammer⁴, Katherine E. Whitaker^{9,10}, Garth Illingworth¹¹, Rychard Bouwens¹², Sandro Tacchella^{13,14}, Jorryt Matthee¹⁵, Natalie Allen⁴, Rachel Bezanson¹⁶, Charlie Conroy¹, Ivo Labbe¹⁷, Joel Leja^{18,19,20}, Ecaterina Leonova²¹, Dan Magee²², Sedona H. Price²³, David J. Setton¹⁶, Victoria Strait⁴, Mauro Stefanon^{24,25}, Sune Toft⁴, John R. Weaver⁹, and Andrea Weibel³

Observations of UV-bright galaxies with JWST at $z \ge 10$

A highly magnified candidate for a young galaxy seen when the Universe was 500 Myrs old

Wei Zheng¹, Marc Postman², Adi Zitrin³, John Moustakas⁴, Xinwen Shu⁵, Stephanie Jouvel^{6,7}, Ole Host⁶,

Alberto Molino⁸, Larry Bradley², Dan Coe², Leonidas A. Moustakas⁹, Mauricio Carrasco¹⁰, Holland

Ford¹, Narciso Benítez⁸, Tod R. Lauer¹¹, Stella Seit

Medezinski¹, Matthias Bartelmann³, Tom Broadhur

Infante¹⁰, Saurabh Jha¹⁷, Daniel D. Kelson¹⁸, Ofer

Meneghet

der Wel²⁴

JWST/MIRI photo in a

Jakob M. Helton^{1*}

A Long Time Ago in a Galaxy Far, Far Away: A Candidate $z \sim 12$ Galaxy in Early JWST **CEERS** Imaging Steven L. Finkelstein¹, Micaela B. Bagley¹, Pablo Arrabal Haro², Mark Dickinson², Henry C. Ferguson³, Jeyhan S. Kartaltepe⁴⁽¹⁾, Casey Papovich^{5,6}⁽¹⁾, Denis Burgarella⁷⁽¹⁾, Dale D. Kocevski⁸⁽¹⁾, Marc Huertas-Company^{9,10,11}⁽¹⁾, Kartheik G. Iyer¹², Anton M. Koekemoer³, Rebecca L. Larson^{1,13}, Pablo G. Pérez-González¹⁴, Caitlin Rose⁴, Sandro Tacchella^{15,16}, Stephen M. Wilkins^{17,18}, Katherine Chworowsky^{1,92}, Aubrey Medrano¹, Alexa M. Morales¹, tes at $z \sim 9-15^*$ Why so many UV bright galaxies in these early times? n¹¹, Nicha Leethochawalit^{3,4,5} Iario Nonino⁸¹, Diego Paris¹,), Antonello Calabrò¹, Amata Mercurio¹⁶¹⁶, D, Benedetta Vulcani²⁰ narco.castellano@inaf.it Angeles, CA 90095, USA Australia 180, Thailand 40129 Bologna, Italy Space Science Data Center, Italian Space Agency, via del Politecnico, I-00133, Roma, Italy ⁵ INAF—Osservatorio Astronomico di Trieste, Via Tiepolo 11, I-34131 Trieste, Italy ⁹ University of Ljubljana, Department of Mathematics and Physics, Jadranska ulica 19, SI-1000 Ljubljana, Slovenia ¹⁰ Department of Physics and Astronomy, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA ¹¹ Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy ³ INAFIASF Milano, via A. Corti 12, I-20133 Milano, Italy ⁴ Cosmic Dawn Center (DAWN), Denmark Two Remarkably Luminous Galaxy Candidates at $z \approx 10-12$ Revealed by JWST ¹⁵ Niels Bohr Institute, University of Copenhagen, Jagtvej 128, DK-2200 København N, Denmark ¹⁶ INAF—Osservatorio Astronomico di Capodimonte, Via Moiariello 16, I-80131 Napoli, Italy Rohan P. Naidu^{1,2,26}, Pascal A. Oesch^{3,4}, Pieter van Dokkum⁵, Erica J. Nelson⁶, Katherine A. Suess^{7,8}, ¹⁷ IPAC, California Institute of Technology, MC 314-6, 1200 E. California Boulevard, Pasadena, CA 91125, USA Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, I-44122 Ferrara, Italy Gabriel Brammer⁴, Katherine E. Whitaker^{9,10}, Garth Illingworth¹¹, Rychard Bouwens¹², Sandro Tacchella^{13,14}, INAF-OAS, Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, via Gobetti 93/3, I-40129 Bologna, Italy Jorryt Matthee¹⁵, Natalie Allen⁴, Rachel Bezanson¹⁶, Charlie Conroy¹, Ivo Labbe¹⁷, Joel Leja^{18,19,20}, Ecaterina Leonova²¹, Dan Magee²², Sedona H. Price²³, David J. Setton¹⁶, Victoria Strait⁴, Mauro Stefanon^{24,25}, INAF Osservatorio Astronomico di Padova, vicolo dell'Osservatorio 5, I-35122 Padova, Italy ²¹ Infrared Processing and Analysis Center, Caltech, 1200 E. California Blvd., Pasadena, CA 91125, USA Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa, 277-8583, Japan Sune Toft⁴, John R. Weaver⁹, and Andrea Weibel³ Received 2022 July 19; revised 2022 September 24; accepted 2022 September 26; published 2022 October 18

Zihao Wu^2 , Daniel Stefano Carniani³, Zhiyuan Ji¹, William M. Baker^{4,5}, Rachana Bhatawdekar⁶, Andrew J. Bunker⁷, Phillip A. Cargile² Stéphane Charlot⁸, Jacopo Chevallard⁷, Francesco D'Eugenio^{4,5}, Eiichi Egami¹, Benjamin D. Johnson², Ga Jianwei Lyu¹, Roberto Maiolino^{4,5,9}, Pablo G Marcia J. Rieke¹, Brant Robertson¹¹, Aay Jan Scholtz^{4,5}, Irene Shivaei¹⁰, Feng Sandro Tacchella^{4,5}, Lily Whitler¹, Christin Christopher N. A. Willmer¹, Chris Willott¹³, Yongda Zhu¹

Observations of UV-bright galaxies with JWST at $z \ge 10$

- Massive objects high stellar mass -
 - High star formation efficiency -
 - Top heavy IMF -
- Exotic Dark Matter scenario (WDM, fuzzy DM etc.) -
 - Primordial Non-gaussianity -
 - Modified primordial matter power spectrum -
 - UV Luminosity function (UVLF) variability -

Possible arguments to explain the 'over-abundance' of UV bright galaxies

Possible arguments to explain the 'over-abundance' of UV bright galaxies

Massive objects - high stellar mass High star formation efficiency Top heavy IMF Exotic Dark Matter scenario (WDM, fuzzy DM etc.) Primordial Non-gaussianity -

- Modified primordial matter power spectrum -

- UV Luminosity function (UVLF) variability -

Time

Time

Halo mass function

$P(M_{UV})$

 M_h

UVLF

Stochastic star formation in early galaxies: JWST implications

A. Pallottini $\mathbb{O}^{1,\star}$ and A. Ferrara \mathbb{O}^{1}

The impact of UV variability on the abundance of bright galaxies at $z \ge 9$

Xuejian Shen,^{1,2}* Mark Vogelsberger,² Michael Boylan-Kolchin,³ Sandro Tacchella,^{4,5} and Rahul Kannan⁶

Identification of a transition from stochastic to secular star formation around z = 9 with JWST

L. Ciesla¹, D. Elbaz², O. Ilbert¹, V. Buat^{1,3}, B. Magnelli², D. Narayanan^{4,5}, E. Daddi², C. Gómez-Guijarro², and R. Arango-Toro¹

UVLF Variability

Stellar feedback

UVLF Variability

Stellar feedback

A TANK STORES PARAMONA

Need to validate this with high resolution simulation

UVLF Variability

SPICE simulations

Code: RAMSES-RT Side: 10 cMpc/h Max resolution: 28(15) pc at z = 5(10)

Rac

Slides from Benedetta Casavecchia (MPA)

Bhagwat et al. 24

Radiation pressure on dust

LyC radiation escape

C II emission

SN driven feedbacks models

Bursty

Time: 10 Myr Energy: 2×10⁵¹ erg Smooth Time: 3-40 Myr Energy: 2×10⁵¹ erg

Slides from Benedetta Casavecchia (MPA)

Hyper(novae)

Time: 3-40 Myr Energy: 10⁵⁰-2×10⁵¹ erg (SN) 10⁵² erg (HN)

Bursty

Time: 10 Myr Energy: 2 × 10⁵¹ erg

Smooth Time: 3-40 Myr Energy: 2×10⁵¹ erg

Slides from Benedetta Casavecchia (MPA)

Hyper(novae)

Time: 3-40 Myr Energy: 10⁵⁰-2×10⁵¹ erg (SN) 10⁵² erg (HN)

Bursty

Time: 10 Myr Energy: 2 × 10⁵¹ erg

Smooth Time: 3-40 Myr Energy: 2×10⁵¹ erg

Slides from Benedetta Casavecchia (MPA)

Hyper(novae)

Time: 3-40 Myr Energy: 10⁵⁰-2×10⁵¹ erg (SN) 10⁵² erg (HN)

Bursty

Time: 10 Myr Energy: 2×10⁵¹ erg

Smooth Time: 3-40 Myr Energy: 2×10⁵¹ erg

Slides from Benedetta Casavecchia (MPA)

Hyper(novae)

Time: 3-40 Myr Energy: 10⁵⁰-2×10⁵¹ erg (SN) 10⁵² erg (HN)

Bursty

Time: 10 Myr Energy: 2×10^{51} erg

Slides from Benedetta Casavecchia (MPA)

Hyper (novae)

Time: 3-40 Myr Energy: $10^{50} - 2 \times 10^{51}$ erg (SN) 10^{52} erg (HN)

Bursty

Time: 10 Myr Energy: 2×10⁵¹ erg

Smooth Time: 3-40 Myr Energy: 2×10⁵¹ erg

Slides from Benedetta Casavecchia (MPA)

Hyper(novae)

Time: 3-40 Myr Energy: 10⁵⁰-2×10⁵¹ erg (SN) 10⁵² erg (HN)

Bursty

Time: 10 Myr Energy: 2 × 10⁵¹ erg

Smooth Time: 3-40 Myr Energy: 2×10⁵¹ erg

Slides from Benedetta Casavecchia (MPA)

Hyper(novae)

Time: 3-40 Myr Energy: 10⁵⁰-2×10⁵¹ erg (SN) 10⁵² erg (HN)

Bursty

Time: 10 Myr Energy: 2 × 10⁵¹ erg

Smooth Time: 3-40 Myr Energy: 2×10⁵¹ erg

Slides from Benedetta Casavecchia (MPA)

Hyper(novae)

Time: 3-40 Myr Energy: 10⁵⁰-2×10⁵¹ erg (SN) 10⁵² erg (HN)

SPICE simulations

bursty-sn

- from Katyayani Trivedi's poster Connecting CII and OI in SPICE

SPICE simulations

- from Katyayani Trivedi's poster Connecting CII and OI in SPICE

Star formation history for the most massive haloes in each model

Mass dependence of $\sigma_{\rm UV}^{\rm dust}$

all models exhibit a similar slope, confirming that lower mass halos are more sensitive to feedback effects, producing more fluctuations compared to massive halos.

'bursty-sn' model produces highest amplitude and highest scatter - wider range of variability

Redshift dependence of $\sigma_{\rm UV}^{\rm dust}$

Redshift dependence of $\sigma_{\rm UV}^{\rm dust}$

Redshift dependence of $\sigma_{\rm UV}^{\rm dust}$

 \boldsymbol{Z}

Redshift dependence of $\sigma_{\rm UV}^{\rm dust}$

Basu et. al. 2025 (in review)

Impact on galaxy morphology

Can we connect UVLF variability with disk formation?

Take Home Messages

Also, I am moving to Lyon in October - will work with Joki Rosdahl - you can find me there as well xD

Variability is impacted by the rise of UVB

Catch me if you can

Reach me at : basu.arghyadeep@yahoo.in Or Facebook, Instagram, LinkedIn... I am here, there and everywhere :D

Variability is mass and redshift dependent

Take Home Messages

Variability is impacted by the rise of UVB

Feedback accelerates Reionization - - Reionization suppresses feedback

Cheers to POTSDAM ! Thank you :D

Disclaimer : No cats are harmed and I am also not harmed by any cat

Catch me if you can

Reach me at : basu.arghyadeep@yahoo.in Or Facebook, Instagram, LinkedIn... I am here, there and everywhere :D

Also, I am moving to Lyon in October - will work with Joki Rosdahl - you can find me there as well xD

Variability is mass and redshift dependent

Variability might impact the disk formation?

