

COLd Ism gas and Better REsolution

20 pkpc

Project core members:

Benitez-Llambay, Alejandro Chaikin, Evgenii Correa, Camila Frenk, Carlos Husko, Filip McGibbon, Rob Ploeckinger, Sylvia Richings, Alex Schaller, Matthieu Schaye, Joop Trayford, James

z = 0.30

1-slide project overview

- Successor of the EAGLE project, run with the **SWIFT code** (SPH-based), (MS+24)
- 3 main resolutions and simulation volumes (for now),
- Cold ISM physics with non-equilibrium (H+He) chemistry, live dust,

 (Richings+14, Ploeckinger+25) (Trayford+25)

 and updated chemistry, and various early feedback channels.

 (Correa in prep.)
- Dark matter & baryon particles have same mass (size + dynamics effects), (Ludlow+19,20)
- Calibration of model using **ML techniques**, new **halo finder linking** (Chaikin in prep.) (Forouhar-Moreno+25) **through time**,
- **Globular cluster model** coupled to the solver, **jet-AGN** model. (Pfeffer in prep.)

Simulation sizes

 $m5 \rightarrow m_{\rm gas} \approx 10^5 \, {\rm M}_{\odot}$

 $\mathbf{m6} \to m_{\rm gas} \approx 10^6 \, \mathrm{M}_{\odot}$

 $\mathbf{m7} \rightarrow m_{\mathrm{gas}} \approx 10^7 \, \mathrm{M}_{\odot}$

 $N_{\text{gas}} = 3008^3$

 $N_{\text{tot}} = 5140^3$

EAGLE-like phase-space

Typical resolution:

100 - 1000 pc

OR

 $10^4 - 10^8 \, \mathrm{M}_{\odot}$

COLIBRE phase-space

Schaye (in prep.)

Self-consistent H phases

Schaye (in prep.)

Non-uniform D-to-M ratio

Self-consistent H phases

COLIBRE feedback

- Heating temperature is variable and set by DV&S 2012 criterion
- Total energy injected is a function (sigmoid) of local <u>pressure</u>.
- Kinetic fraction is fixed to 10%. Kick velocity is 50km/s (fixed). (Chaikin+23)
- We choose the particles using an isotropic scheme. (Chaikin+22)
- Calibration using Gaussian process emulators (Chaikin in prep.)

SF and feedback convergence

AGN feedback model

Jet at < 0.01x Eddingtoon and at > 1x Eddington

Thermal in between

Bondi-Hoyle accretion with Krumholz turbulence correction

Spin evolution to direct the jets

Calibration targets - Stellar masses

Calibration targets - Stellar sizes

Ludlow (in prep.)

Gas content of galaxy

High(er)-z results

Chaikin (in prep.)

High(er)-z results

Chaikin (in prep.)

Effect of Eddington bias

Chaikin (in prep.)

Massive quenched objects

Quiescent Galaxy Selection: $sSFR < 10^{-10} \, yr^{-1}$ **L400m7 L200m6**

Simulations are in good agreement with the data.

Large volume is necessary to beat down cosmic variance.

Galactic star formation efficiency

Feedback impact on cosmology

COLd Ism gas and Better REsolution

- New generation of galaxy formation model in large volumes to z=0.
- Multiple resolutions, volumes, model variations.
- Cold ISM, non-eq. chemistry model, live-dust, self-consistent HI, H₂, AGN jet feedback.
- Good test bed for (and good match to) population-level galaxy properties.
- Invitation: Please come have a chat about what you'd like to see from the simulations or you would like to do with them!