

Galaxy Evolution

Meets

Large Scale Structure

M. Reza Ayromlou

Argelander Fellow (University of Bonn)

Galaxy Evolution meets Large Scale Structure

The Environment of Galaxies
Beyond the Halo Boundary

Ayromlou+ 2021b

See also Bahe+ 2013, Wetzel+ 2014

Large-Scale Correlation Between Galaxy

Properties (Conformity)

Ayromlou+ 2023a

See also Weinmann+ 2006, Kauffmann+ 2013, Tinker+ 2018, Sin+ 2019, Lacerna+ 2021, ...

The Conformity Signal: SDSS vs. Simulations

The signal is present out to at least 5 Mpc in

- SDSS
- LGal A21
- TNG
- EAGLE

The signal is missing in

 LGal - H20 (no stripping beyond R200)

Feedback Reshapes Baryon Distribution

From Dwarfs to Clusters

Halo Baryon Fraction

In most halo mass ranges, the halo baryon fraction is lower than the cosmic value observed in the CMB (The missing baryon problem).

Stellar Density

Dark Matter Density

The Closure Radius

The radius within which all baryons associated with DM are found.

$$f_b(< R_c) = \Omega_b/\Omega_m$$

The Closure Radius

The radius within which all baryons associated with DM are found.

$$f_b(< R_c) = \Omega_b/\Omega_m$$

Processes that impact the Closure Radius

Comparing several variants of TNG, which selectively exclude certain physical processes.

Preliminary Results (Not Shown)

Predicting the closure radius: A Universal Relation

Free parameters

Predicting the closure radius: A Universal Relation

$$\frac{R_{\rm c}}{R_{200{\rm c},500{\rm c}}} - 1 = \beta(z) \left[1 - \frac{f_{\rm b}(< R_{200{\rm c},500{\rm c}})}{f_{\rm b,cosmic}} \right]$$

$$\beta(z) = \alpha (1+z)^{\gamma}$$

The
Universal Equation
is valid across
all simulations.

The High-Redshift Universe

Baryon (Re)Distribution and Galaxy Quenching

Models are typically calibrated against low-z data such as SMF (right) and Quenched fraction (left)

Low-z Calibration of Models

Stellar Mass Function of Quenched Galaxies

- The total galaxy stellar mass function of agrees with data out to z=6
- L-Galaxies underpredicts the stellar mass function of quenched galaxies at z>2

See also Valentino+ 2023, Hartley+ 2023, Remus+2024, De Lucia+ 2024, Lagos+ 2024, Weller+2024, and ...

M. Reza Ayromlou (Uni. Bonn), July 2025 Vani+ 2025

Galaxy Quenching at z~4.6

Simulations may have a few quenched galaxies at z>3, but not enough to reproduce the high-z observations.

Preliminary Results (Not Shown)

Summary

- The Closure Radius is the halocentric distance within which all baryons associated with dark matter are found.
- The Universal Equation is a (fundamental) scaling relation that predicts the closure radius in observations.
- **Current simulations** predict smaller closure radii at high-z. **BUT** they also underpredict the number density of quenched galaxies at high-z.

- A New AGN Feedback Model: Feedback depends on \dot{M}_{BH} , M_{BH} , and SMBH Spin.

