Small-scale stellar haloes: detecting extended substructure in the outskirts of Milky Way dwarf galaxy satellites

PhD student, University of Victoria

Galaxy Stellar Haloes

• As galaxies are accreted into systems like the Milky Way, evidence of their disruption is scattered throughout the stellar halo.

Milky Way dwarf galaxy satellites; ESA/Gaia stellar density map

Galaxy Stellar Haloes

• As galaxies are accreted into systems like the Milky Way, evidence of their disruption is scattered throughout the stellar halo.

> Evidence for past accretions can be observed in the <u>stellar</u> <u>haloes/outskirts</u> of galaxies, but the stellar extent for dwarf galaxies

Milky Way dwarf galaxy satellites; ESA/Gaia stellar density map

Outskirt Stars of Dwarf Galaxies

- Competing hypotheses for stars at large radial distances to their dwarf satellite:
 - 1. Tidal interactions imparted by the host
 - > Stripped stars of a satellite may be moved to large radius.

Outskirt Stars of Dwarf Galaxies

- Competing hypotheses for stars at large radial distances to their dwarf satellite:
 - 1. Tidal interactions imparted by the host
 - > Stripped stars of a satellite may be moved to large radius.
 - 2. Dwarf-dwarf mergers
 - ➤ Member stars in the outskirts may likely be from past accretions!

Image Credit: ESA

Utility of Gaia & Resolved Stars

• Our goal: to identify individual member stars in dwarfs, particularly those most radially distant.

- The Milky Way's (MW's) satellites are the best laboratory to explore the stellar haloes of dwarf galaxies, and Gaia is the best dataset to probe resolved stars in these systems!
- We developed an algorithm for determining:
 - a) The probability that a star in a given field is a member of its nearby satellite, and
 - b) Which dwarf galaxies exhibit signatures of extended stellar profiles

jaclynjensen@uvic.ca

Results!

Systems identified in our work, whose density profiles suggest an extended outer component:

- 2 Classical systems
 - Sculptor, Ursa Minor
- 7 Ultra-Faint Dwarfs
 - Boötes 1, Boötes 3, Draco 2,
 Grus 2, Segue 1, Tucana 2,
 Tucana 3

--Green ellipse highlights 5rh

Systems with Known/Suspected Tidal Tails

Boötes 1 (Longeard+22)

- > Stars observed up to $4r_h$; we find members up to $\sim 9r_h!$
- > See Fletcher Waller's poster! GRACES follow-up of some outskirt members.

Boötes 3 (Carlin & Sand 18)

➤ No spectroscopically confirmed members of stream (yet!)

Tucana 3 (Drlica-Wagner+15)

Tails ~4 deg on sky, confirmed spectroscopic members

Ursa Minor (Palma+03)

- > S-shape isophote contours
- ➤ GRACES follow-up (Sestito+23, submitted)

--Green ellipse highlights 5rh

Systems with Suspected Extended Haloes

Tucana 2 (Chiti+21)

- Dwarf-dwarf merger suggested from stars up to 9r_h
- > We find additiona stars at opposite side of the halo at roughly same radii

Boötes I (Longeard+22)

➤ Metallicity gradient only comparable to Tuc2 (an argument as to a dwarf-dwarf merger scenario in Chiti+21)

Ruling out a Tidal Scenario

Evidence *for* tides:

- Morphology
- Velocity gradient
- Close (< 30 kpc) pericenter in orbit
 - Low density ratio $(\rho(\langle r_h) / \rho_{MW, peri}; Pace+22)$
- Member stars located beyond a break radius (Peñarrubia+09)
- Chemically similar

Evidence *contrary to* tides:

- Extended features perpendicular to orbit
- No velocity gradient
- Possible (steep) metallicity gradient

- Large break radius (beyond main body of system)
- A separate [α/Fe] chemical sequence in outskirts

Future Work with GHOST:

the Gemini High-resolution Optical SpecTrograph

- Spectroscopic follow-up for extended candidates –
 radial velocities & abundances will allow us to constrain a star's
 membership & origin
- GHOST specs:
 - 75,000 resolution in single object mode
 - Radial velocity precision of 10 m/s
 - Coverage from~360 950 nm

Summary

We have developed an algorithm to identify member stars in each MW
 dwarf satellite (observed in Gaia eDR3), and additionally probe each system
 for extended stellar profiles.

We identified <u>9 dwarf satellites</u> which we argue show evidence of <u>an</u> <u>extended stellar halo/indications of tidal features</u>. Future spectroscopic <u>campaigns</u> (e.g., GHOST) joined with <u>dynamical models/R_break radii</u> will be necessary to confirm the <u>origins of these distant outskirt stars</u> (late minor merger/tidal).