## **Simulations of the small-scale surface dynamo**

## of cool main-sequence stars

Fabio Riva<sup>1</sup>, fabio.riva@irsol.usi.ch Oskar Steiner<sup>1,2</sup>,

Bernd Freytag<sup>3</sup>

<sup>1</sup> Istituto ricerche solari Aldo e Cele Daccò (IRSOL), Faculty of Informatics, Università della Svizzera italiana, CH-6605 Locarno, Switzerland <sup>2</sup> Leibniz-Institut für Sonnenphysik (KIS), Schöneckstrasse 6, 79104 Freiburg i.Br., Germany

<sup>3</sup> Theoretical Astrophysics, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden

## Motivation

We aim to investigate the origin and nature of small-scale magnetic fields and their interaction with plasma flows in the near-surface layers of four cool main-sequence stars of spectral type K8V, K2V, G2V, and F5V.

The interplay of small-scale magnetic fields with plasma flows affects the photometric and spectral variability of a star. This has far-reaching consequences, also in the context of exoplanet detection. Consequently, a detailed modeling of the magnetic fields and of the turbulent plasma flows present in the proximity of stellar surfaces is required.



**IRSOL** 

**IRSO** 

Un istituto

affiliato all'USI

## Numerical setup

Star in a box simulations using the CO<sup>5</sup>BOLD radiative MHD code (HLL solver, grey radiative transfer).

|                                                                              | <b>K8V</b> | K2V         | G2V         | F5V          |
|------------------------------------------------------------------------------|------------|-------------|-------------|--------------|
| T <sub>eff</sub> [K]                                                         | 4005       | 5000        | 5766        | 6506         |
| log(g)                                                                       | 4.66       | 4.59        | 4.44        | 4.24         |
| $L_x = L_y [km]$                                                             | 2200       | 3500        | 6000        | 15000        |
| Vertical size [km]                                                           | [-748,220] | [-1190,350] | [-2412,660] | [-6150,1650] |
| L <sub>gran</sub> [km]                                                       | 356        | 615         | 1006        | 2501         |
| $\ln[P(\langle \tau \rangle = 1)/P]$                                         | [-5.1,4.9] | [-5.2,4.9]  | [-5.8,5.8]  | [-6.4,8.0]   |
| n <sub>x</sub> =n <sub>y</sub>                                               | 750        | 750         | 750         | 750          |
| nz                                                                           | 330        | 330         | 384         | 390          |
| $\Delta \mathbf{x} = \Delta \mathbf{y} = \Delta \mathbf{z} \; [\mathrm{km}]$ | 2.93       | 4.67        | 8.00        | 20.00        |
| $v_{rms}(\langle \tau \rangle = 1)$ [km/s]                                   | 1.75       | 2.95        | 4.3         | 6.4          |

- $\ln(P^0/\langle P 
  angle_{\mathrm{h},t})$   $\ln(P^0/\langle P 
  angle_{\mathrm{h},t})$
- Similar SSD field strengths reached in all models, irrespectively of the kinematic SSD growth rate;
- Similar fraction of kinetic energy converted into magnetic energy in all models (about 10-25%);
- Magnetic fields are slightly more vertical than horizontal in the convection zone, whereas they become more horizontal in the photosphere, in particular for the coolest models..

| Spectral | $ B_z _{\tau_{\mathrm{R}}=1}$ [G] | $B_{\tau_{\mathrm{R}}=1}$ [G] | $B_{eqdyn,\tau_R=1} [G]$ |            |
|----------|-----------------------------------|-------------------------------|--------------------------|------------|
| туре     | saturation                        | saturation                    | Kinematic                | saturation |
| K8V      | 54                                | 120                           | 670                      | 630        |
| K2V      | 55                                | 110                           | 690                      | 640        |
| G2V      | 70                                | 140                           | 720                      | 680        |
| F5V      | 67                                | 140                           | 710                      | 660        |

Magnetic bright features (with Bc. 2)

Similar number of granules and of grid cells per granule.

Small-scale dynamo (SSD) simulations started from HD runs with 1 mG vertical seed magnetic field. Two bottom boundary conditions for magnetic fields:

Bc. 1:  $\partial_z \mathbf{B} = 0$  in outflows and  $\mathbf{B}_h = 0$  in inflows (zero Poynting flux into box, net loss of Poynting flux);

Bc. 2:  $\partial_z \mathbf{B} = 0$  in outflows and  $B_x=0.08B_{eq}$  in inflows (finite Poyinting flux into box, but still net loss of Poynting flux;  $B_h=0.08B_{eq}$  is a typical value for the deep convection zone).





- With Bc. 2, strong magnetic flux concentrations and corresponding magnetic bright points form in all models;
- Magnetic flux concentrations are more numerous for the K2V and G2V than for the K8V and F5V models. This because of two competing effects: an increasing opacity with increasing effective temperature and thus smaller thermal equipartition fields for larger

No kG concentrations with Bc. 1. ⇒ no magnetic bright points;
kG concentrations and magnetic bright points with Bc. 2.

**Reference:** Riva et al., submitted

temperature, and thus smaller thermal equipartition fields for larger  $T_{eff}$ , and an increasing evacuation efficiency with increasing  $T_{eff}$ .



- We simulated SSD action in the atmosphere of four cool mainsequence stars of different spectral type;
- The growth rate of the dynamo scales as  $\sim v/L$ ;
- Stars of different spectral types display similar mean magnetic fields and mean magnetic to equipartition field ratios;
- With Bc. 2, strong magnetic flux concentrations form at the surface of all models, resulting in magnetic bright features.