Probing the mass of the Andromeda galaxy with DESI spectroscopy

Sergey Koposov Institute for Astronomy, Edinburgh Institute of Astronomy, Cambridge

With Arjun Dey, Joan Najita & DESI MWS/ DESI collaboration

Based on: 2208.11683

DESI Observations of the Andromeda Galaxy: Revealing the Immigration History of Our Nearest Neighbor

Arjun Dey¹, Joan R. Najita¹, Sergey E. Koposov^{2,3,4}, J. Josephy-Zack⁵, Gabriel Maxemin⁵, Eric F. Bell⁶, C. Poppett^{7,8,9}, E. Patel¹⁰, L. Beraldo e Silva⁶, A. Raichoor¹¹, D. Schlegel⁷, D. Lang^{12,13}, A. Meisner¹, Adam D. Myers¹⁴, J. Aguilar⁷, S. Ahlen¹⁵, C. Allende Prieto¹⁶, D. Brooks¹⁷, A. P. Cooper^{18,19,20}, K. S. Dawson²¹, A. de la Macorra²², P. Doel¹⁷, A. Font-Ribera²³, Juan García-Bellido²⁴, S. Gontcho A Gontcho²⁵, J. Guy⁷, K. Honscheid^{26,27}, R. Kehoe²⁸, T. Kisner⁷, A. Kremin⁷, M. Landriau⁷, L. Le Guillou²⁹, Michael E. Levi⁷, T. S. Li³⁰, Paul Martini^{26,31}, R. Miquel^{23,32}, J. Moustakas³³, Jundan Nie³⁴, N. Palanque-Delabrouille^{7,35}, F. Prada³⁶, E. F. Schlafty³⁷, Ray M. Sharples³⁸, Gregory Tarlé³⁹, Yuan-Sen Ting (TJ JKR)^{40,41}, L. Tyas⁷, M. Valluri⁶, Risa H. Wechsler^{42,43,44}, and H. Zou³⁴

Dey, Najita, Koposov et al. (2023) ApJ, Volume 944, Issue 1, id.1, 35 pp

U.S. Department of Energy Office of Science

DESI

- (See Ting Li's talk for more details)
- Kitt Peak (4m)
- 3-arm (blue 3600-5500A, green 5500-7000A, red 7000A-10000A) spectrograph)
- 5000 fiber positioners
- 3.2 degree diameter FOV
- Flux calibration accurate to 1%
- Resolution R -- from 2000 at blue edge to 5000 at 10000A
- Highly efficient, throughput 20-50%

DESI Science Verification

- One of the science targets M31
- DESI FOV ~ 40 kpc at distance of M31
- Each fiber has access to ~
 1'.5 patrol radius (300 pc)

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

M31 past work

- A lot of results from last 20 years, revealing/analysing halo substructure
- **Photometry**: PANDAS survey (Mcconnachie+2018)
- **Spectroscopy**: SPLASH survey Gilbert+2012, Caldwell+2016, Escala+2019
- **Modelling**: Fardal+2013, Kirihara+2017, Hammer+2018 d'Souza+2020

M31 DESI targeting

- Center of M31, bright tile i<19, targets HII regions, supergiants, GCs (Gaia selected)
- Outer tiles, selecting TRGB/AGB stars i~22-22.5
- We targeted g-i>2 red stars (hence metal-rich bias)
- Max exposure 1.5hr
- RV error 5-10 km/s at $z\sim 22$

DESI M31 spectroscopy

- Total number of M31 member stars -- 7500
- 136 clusters
- ~ 50 HII regions/ PNs
- The majority of outer M31 stars are metalrich [Fe/H]>-0.5

M31 position velocity diagram

• Clearly dominated by substructure

For the plot we excluded M31 disk stars

• We see "chevrons" in position velocity diagrams of different sections of M31

 We see "chevrons" in position velocity diagrams of different sections of M31

 We see "chevrons" in position velocity diagrams of different sections of M31

• We see "chevrons" in position velocity diagrams of different sections of M31

 We see "chevrons" in position velocity diagrams of different sections of M31

M31 shells

- Positions velocity "chevrons" are explained by wrapping of tidal debris with different energies (Dong-Paez+2022)
- Similar shells are seen in MW (Belokurov+2022) with GSE debris
- Chevrons can be from one or multiple pericentric passages
- Energy sorting along chevrons (high energy particles have longer periods)

M31 model

- N-Body model based on initial conditions from Fardal+2013 Kirihara+2017
- Plummer sphere accreted ~ 1-2 Gyr ago
- The model approximately matches the GSS + chevrons in the western/eastern shells

M31 mass modelling with Giant Stellar Stream

GSS

R_{proj}

- We focus on the Giant Stellar stream (GSS) only
- Extract RV(R_{proj}) of the GSS.
- Constraints on the distance gradient along GSS (Cohn+2016)
- Assume almost radial track
- Energy conservation
- We can not assume constant energy (due to energy sorting in the shell)

$$\frac{V^2(R)}{2} + \Phi(X) = E_0 + (R - R_0) \frac{dE}{dR},$$

Mass modelling

- Free parameters: energy and energy gradient, halo mass and scale radius
- Prior on orientation from photometry
- NFW halo
- We can constrain the DM halo mass within 125 kpc $6\pm1\times10^{11} M_{sun}$

Conclusions

- More than 7500 stars in M31.
- The catalogue released on zenodo (link on Arxiv:2208.11683)
- We reveal a rich shell system in M31 in previously unseen detail. Most likely a single merger event.
- We constrain the M31 halo mass with the fit to just GSS. The modelling of the whole shell system is needed.
- We have more M31 data! (unpublished yet)
- DESI is an excellent tool for M31 mapping

Dey, Najita, Koposov et al. (2023) ApJ, Volume 944, Issue 1, id.1, 35 pp

I will post slides on Slack

Distribution on the sky

Position-Velocity diagram

4

View from the MW direction

Other projections

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

Thanks to our sponsors and 69 Participating Institutions!