

The masses of Local Group galaxies and the baryonic Tully-Fisher relation

Pengfei Li (AIP) KAELEE PARKER (TEXAS) TIFFANY VISGAITIS (CWRU) FEDERICO LELLI (ARCETRI) JIM SCHOMBERT (OREGON) MARCEL PAWLOWSKI (AIP)

Dynamical Masses of Local Group Galaxies

STACY MCGAUGH

Empirical Laws of Galactic Rotation

 \mathbf{N}

(km)

 \geq

- Flat rotation curves
- Baryonic Tully-Fisher relation (BTFR)

$$M_b = A V_f^4$$

• Radial acceleration relation (RAR)

$$g_{obs} = \mathscr{F}(g_{bar})$$

Note that

$$M_b = AV_f^4$$
 is not $M_{dyn} = RV^2/G$

though presumably they must be related.

The Radial Acceleration Relation (RAR)

what you get

A scaling relation observed in spiral galaxies

McGaugh+ 2016, PRL, 117, 201101 Lelli+ 2017, ApJ, 836, 152

Presumably the Empirical Laws hold for galaxies in the Local Group

- Apply the RAR to find the corresponding distribution of stars.

• The resulting surface density profile has features corresponding to observed spiral arms

• Starting with the observed terminal velocities (HI from McClure-Griffiths shown), one can

McGaugh 2016, ApJ, 816, <u>42</u>

Can improve on the exponential disk approximation in the Jeans equation:

Using the numerical derivative in the Jeans equation resolves the tension between the Gaia rotation curve and that from terminal velocity observations of the ISM.

McGaugh 2019, ApJ, 885, <u>87</u>

Milky Way Rotation Curve

Using the numerical derivative in the Jeans equation resolves the tension between the Gaia rotation curve and that from terminal velocity observations of the ISM.

<u>Milky Way Parameters</u> $R_0 = 8.122 \text{ kpc}$ $\Theta_0 = 233.3 \text{ km s}^{-1}$ $M_* = 6.16 \times 10^{10} \,\mathrm{M_{\odot}}$ $M_g = 1.22 \times 10^{10} \,\mathrm{M_{\odot}}$ $M_{200} \approx 1.39 \times 10^{12} \,\mathrm{M_{\odot}}$ $\rho_{DM}(R_0) \approx 0.00676 \text{ M}_{\odot} \text{ pc}^{-3}$

McGaugh 2019, ApJ, 885, <u>87</u>

BTFR calibration

50 galaxies

with well-resolved HI data cubes, Spitzer [3.6] luminosities, and accurate distances from

27 Cepheids

23 TRGB

No tension between Cepheid and TRGB calibrators

$$M_b = A V_f^4$$

 $A = 48.5 M_{\odot} \text{ km}^{-4} \text{ s}^4$

Consistent with previous estimates $45 \le A \le 50.$

$$H_0 = 75.1 \pm 2.3 \text{ km s}^{-1} \text{ M}$$

 $H_0 < 70.5$ excluded at 95% c.l.

Schombert+ 2020, AJ, 160, <u>71</u>

Galaxy References M_* M_g V_o (km s⁻¹) $(10^9 M_{\odot})$ M31 5.46 135. 229.5 ± 2.2 2, 3, 4 MW 12.2 197.9 ± 1.9 60.83.1 118.0 ± 1.1 M33 5.5 5 6, 7, 8 LMC 2.00.60 78.9 ± 7.5 SMC 56 ± 5 6, 7, 9 0.31 0.54NGC 6822 55 ± 3 10 0.234 0.20 38.7 ± 3.4 WLM 11, 12 0.0163 0.077 11, 12 DDO 216 0.00816 13.6 ± 5.5 0.0152 11, 12 DDO 210 0.00068 0.00274 16.4 ± 9.5

Table 1 Rotationally-supported Local Group Galaxies

References. (1) Chemin et al. (2009), (2) Licquia & Newman (2015), (3) Olling & Merrifield (2001), (4) Eilers et al. (2019), (5) Kam et al. (2017), (6) Skibba et al. (2012), (7) Brüns et al. (2005), (8) van der Marel & Sahlmann (2016), (9) Di Teodoro et al. (2019), (10) Weldrake et al. (2003), (11) Zhang et al. (2012), (12) Iorio et al. (2017).

300

Can we find an empirical factor β_c that relates the measured velocity dispersion of dwarf spheroidal to the outer rotation speed?

 $M_{dyn} = RV^2/G$

What about dynamical mass?

There is a mismatch between dynamical masses and those from abundance matching for bright spiral galaxies $(L > L^*)$.

Abundance matching predicts a halo mass for the Milky Way of $M_{200} \approx 4 \times 10^{12} \mathrm{M}_{\odot}.$

McGaugh & van Dokkum 2021, RNAAS, 5, 23

Conclusions

- stellar rotation curve from Gaia with ISM terminal velocities

- observed BTFR $M_h \sim V^4$

Local Group galaxies follow the same RAR, BTFR as other spiral galaxies

Accounting for deviations from a pure exponential disk reconciles the

• The equivalent TF circular velocity of dwarf spheroidals is $V_o \approx 2\sigma_*(r_{1/2})$

Dynamical masses deviate from abundance matching for bright spirals

- The total dynamical mass $M_{dyn} \sim R V^2$ does not relate trivially to the

