Rapid Formation of Massive Black Holes via Intense Lyman-Werner Radiation

Zoltán Haiman Columbia University

Redshift z>6 Quasar BHs

- Rare (*"*5σ*"*) objects:
 - ~10 found in SDSS at z>6
 - ~20 in CFHQS & ~10 others
- Record: z = 7.54 (t=0.7 Gyr) (Banados et al . 2018; UKIDDS+WISE+DECaLS)
- Tip of the iceberg (?):
 - space density ~1 Gpc⁻³
- Mass estimates:
 - $M_{bh} = L_{obs}/L_{Edd} \sim 10^{9-10} M_{\odot}$ (~Eddington luminosity)
 - $M_{halo} \sim 10^{12-13} M_{\odot}$ (matching space density)

Matsuoka et al. (201)

A Promising Site: Atomic Cooling Halos

Main assumption: gas remains at $T \approx 10^4 K$ (no H₂ or metals) and cools via atomic H

- Second generation ("atomic-cooling") halos: T_{vir} > 10⁴ K
- Deep potential gas driven in rapidly: $M_{acc} \propto c_s^3/G \approx 0.1$ -1 M_{\odot} yr ⁻¹
- Jeans mass M₁ T^{3/2} / Q^{1/2} = 10⁵⁻⁶ M₀ (—> Mo-Mao-White disk) with isothermal gas at T= 10⁴ K ~ T_{vir} is thick and *Toomre-stable* gas could avoid local fragmentation (Oh & Haiman 2002; Lodato+2007)
- No efficient fragmentation seen in simulations (Bromm & Loeb 2003; Wise & Abel 2007; Regan & Haehnelt 2009 ...)
- A few fragments possible, but coalesce faster than forming stars (Regan et al 2014; Inayoshi & Haiman 2014; Becerra et al. 2015)

Mass of Central Object

 $10^5 \ M_{\odot} \ SMBH \ seed$ Fuller, Woosley & Weaver (1986)

 10^{4}

10⁵

 ${
m [M_{gas}~(M_{\odot})]}$

 10^{6}

 10^{7}

 10^{8}

Shang, Bryan&ZH(2010)

10²⁻³ ${f M}_{\odot}$ Pop III Star (Abel et al., Bromm et al., Yoshida et al.)

Explicit modeling of rapidly accreting protostars: M_{crit}~0.05-0.1 M_oyr⁻¹

Hosokawa+2012,2015; Haemmerle+2017

Getting rid of H₂: LW photodissociation

- Lyman-Werner (LW) radiation (11.1-13.6 eV) dissociates H₂
- [H₂-formation rate ∝ Q²]
 = [photodiss. rate ∝ J_{LW} Q]
- Critical flux $\propto \rho [\propto T_{vir^{3/2}}]$
- J_{21,сті} ~ 0.1-1 in minihalos (n~ 0.1-1ст⁻³) < reionization (needed to avoid large СМВ т)
- Atomic cooling halos: Lya cooling & self-shielding must avoid H₂-cooling up to n~ 10⁴ cm⁻³
- J_{21,crit} ~ 10³⁻⁴ in 3D simulations
 (Shang et al. 2009, etc. etc.)

- Formation:
 - H + e- \longrightarrow H- + γ (IR)
 - $H- + H \longrightarrow H_2 + e-$
- Destruction: $H_2 + \gamma(UV) \longrightarrow (^*)H_2$ $(^*)H_2 \longrightarrow H + H + \gamma(IR)$

Shang, Bryan & ZH (2010)

Large LW flux from bright nearby halo (?)

Flux seen by halos varies

- (non-linear) clustering of ~ $10^{8-9}M_{\odot}$ halos
- Poisson fluctuations in # of neighbors
- UV luminosity scatter

1 in ~ 10° halos has a close (~few kpc) bright neighbor, so it sees a flux ~30x mean background
N ~ 10³ Gpc⁻³ halos, could all end up in z=6 QSO hosts
small changes in J_{crit} → large change in # candidates

Dijkstra, ZH, Mesinger & Wyithe (2008)

Synchronized formation of subhalo: N-body

Visbal, ZH, & Bryan (2014)

- N-body needed to properly include clustering of halos on small scales
- Five Gadget-2 runs (768³ particles, L = 15 cMpc)
- We found 2 synchronized pairs (<10 Myr, 0.5kpc)
- Abundance of z>6 SMBHs with $M_{bh} \sim 10^9 M_{\odot}$ is n ~ 1 cGpc⁻³
- Need ~1 candidate at z=10 per 60³ N-body boxes
- —> we overdid it by 10^4
- Extrapolate w/analytic model: enough pairs with much tighter synchronization (Δt_{sync}~0.2 Myr)
- This can help to avoid external metal pollution: 10⁵ M_☉ BH forms before stars in neighbor produce SNe and metals reach MBH host halo

Synchronized Collapse: Hydro simulation

- Strong LW from a bright neighbor (+ background)
 - $\Delta t_{sync} < 4 Myr$
 - d_{sep} ~ a few x 100 pc

Danger: does starburst evaporate BHforming gas?

Regan, Visbal, Wise, ZH+2017

Computing the H₂ **dissociation rate**

Jemma Wolcott-Green grad student, Columbia

Lyman and Werner bands

 $B^{1}\Sigma_{u}^{+}$

H + H

Pak+(2003)

Computing the H₂ **dissociation rate**

Optically-thick diss rate: k_{H2,diss}(N_{H2},n,T,J_{LW})

- <u>Challenges in calculating the optically-thick rate:</u>
 - 1. frequency-dependent optical depth: contributions from thousands of electronic transitions expensive
 - 2. N_{H2} non-local expensive in 3D simulations (ray-tracing)
 - 3. H₂ level populations (v, J) dep. on N_{H2} , n, T, J_{LW} (time)
 - 4. incident spectrum Pop II/III galaxy SED not known

Shielding factor – fitting formula

<u>Challenges in calculating the optically-thick rate:</u>
 1. frequency dependent optical depth - expensive

Parameterize with "shield factor" (Draine & Bertoldi 1996)

$$k_{\text{diss}}(N_{\text{H}_2}, T) = f_{\text{sh}}(N_{\text{H}_2}, T)k_{\text{diss}}(N_{\text{H}_2} = 0, T),$$

$$f_{\text{sh}}(N_{\text{H}_2}, T) = \frac{0.965}{(1 + x/b_5)^{\alpha}} + \frac{0.035}{(1 + x)^{0.5}}$$

$$\times \exp\left[-8.5 \times 10^{-4} (1 + x)^{0.5}\right]$$

- ➡ D&B 1996 intended for low n, T
- ➡ fits well if H₂ in ground states only
- W-G+2011 modified (α) assuming Boltzmann distribution for rotational pops in v=0 ground state, appropriate for n ~< 10³ cm⁻³
- ➡ modified fit best for T ~ 10³ K

What is the correct column density N_{H2} ?

- Challenges in calculating the optically-thick exact rate:
 - 2. N_{H2} non-local expensive in 3D simulations
 - Typically Jeans length is used, but Sobolev or "Sobolev-like" lengths more accurate (using post-processed ENZO simulations)

H₂ level populations: not in (full) LTE

- <u>Challenges in calculating the optically-thick exact rate</u>:
 3.a H₂ level populations (v, J) depend on N_{H2}, n, T (& time)
 - Previous calculations included populations only in v=0 (D&B'96, W-G,ZH,Bryan'11)

Even at moderate (n,T), first few v levels tend to LTE (CLOUDY)

New "f_{shield}" fitting formula: use this...

W-G & ZH '19: use CLOUDY to fully resolve level populations
calculate "true" frequency-dependent H₂ rate with resolved pops
compare to previous fits & provide improved fitting formula

New physics: UV "re-pumping" ?

<u>Challenges in calculating the optically-thick rate:</u> $k_{H2,diss}(N_{H2}, n, T, J_{LW})$ 3.b H₂ level populations (v, J) — depend also on incident flux

LW "re-pumping" affects populations at high J_{LW} by <u>interrupting radiative cascade</u>

- ➡ re-pumping when J_{LW}~10³ (~J_{crit}!)
- ➡ re-pumping *more likely* than decay when J_{LW} ~ 10⁵ (Shull '78)
- → we find:
 - *f*_{sh} changed by factor of > 10
 with *J*_{LW} >= 5x10³
 - $f_{\rm sh}$ changed by factor of > 1.25 with $J_{\rm LW} \sim 10^3$

may change *J*_{crit} for direct collapse

IR photodetachment of H⁻ suppresses H₂

<u>Challenges in calculating the optically-thick exact rate:</u>
 4. Incident spectrum from neighboring Pop III (III.2) galaxy

• UV not only way to depress H₂-abundance!

$$\mathrm{H} + \mathrm{e}^- \to \mathrm{H}^- + h\nu$$

$$\mathrm{H} + \mathrm{H}^{-} \to \mathrm{H}_{2} + \mathrm{e}^{-}$$

$$k_{
m H^-} = 4\pi n_{
m H^-} \int_{0.76~{
m eV}}^{13.6eV} \sigma_{
u,
m H^-} rac{J_
u}{h
u} {
m d}
u.$$

J_{crit} (T4) spectrum ~ 30 (!)
but requires much more efficient star formation (T4-like M_{char}~ 1 M_☉)
starburst99 Pop III galaxy spectrum closer to T5

No such thing as "Jcrit"

W-G, ZH & Bryan '17

H₂-cooling suppression determined by LW photodissociation and H- photodetachment rates

 J_{crit} defined by choice of spectrum
 more general: CRITICAL CURVE showing combination of the two rates required to keep gas H₂ poor
 generic for any choice of spectrum

• we show $(M/d^2)_{crit}$ ($t_{starburst}$, Z)

→*J*_{crit}=1100 with PopIII spectrum, new shielding, one-zone

So what is the best estimate Jcrit?

- estimates have varied widely from 20-10⁵, depending on assumed spectrum, model for self-shielding, chemistry network, etc.; however, most studies recently have found smaller J_{crit} than initial estimates
- ► latest 1-zone models w/starburst99 Pop III (Z=0) spectra —> J_{crit} ~1300 (W-G,ZH,Bryan 2017,Sugimura+2014) —> J_{crit} ~1100 (with new shielding)
- ⇒ one-zone with "Lyα trapping" —> J_{crit} ~200-900 (Johnson & Dijkstra 2017)
- → 3D simulations: J_{crit}(T5)~700-3000 (Glover 2015), J_{crit}(T5)~10³ (Regan+14), J_{crit}(T_{BB}=2x10⁴)~2000-5000 (Latif+15); J_{crit}(T5)~10⁴ (Shang, Bryan&ZH+10*old f_{sh})
- X-ray background, streaming velocity, compressional heating (..B-field) varies from halo to halo —> massive BH seeds form in corner of multi-D space

Conclusions

I. Forming massive BH by rapid gas infall in atomic cooling halo is promising

- II. The Large Lyman-Werner flux required to suppress H₂ cooling can be realized in rare subset of ACHs
- III. The abundance of such rare halos is uncertain, because (a) we are in steep tail of J_{LW}-distribution and (b) precise value of critical flux varies from halo-to-halo, depending on halo accretion history, local UV/IR/X-ray backgrounds, and local streaming motions
- IV. A global modeling of all of the above effects is needed to predict the high-z BH mass function