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1f you zoom out enough
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“Bathtub Model”
Gas Once you accrete gas other
Accretion processes happen...

This is good enough for folks
working at very large scales.
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A Molecular Bathtub

Extragalactic
(lonized) Gas

“Cloud (H,) Formation”

In dwarfs and outer disks, the
ISM is mostly diffuse, warm gas
and the key to get stars is just tO
get cold, bound clouds. SF is
fast after this.

Diffuse (Atomic . ) , Dense
G(QS ) This is basically the classic “star (Molecular)
formation threshold.” B Gas
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From Cold (Bound?) Gas ko Stars

Extragalactic
(lonized) Gas

“Molecular SF ‘Law’”

In high z galaxies, inner parts of disks,
starbursts, galaxy centers, most gas is
H, already (we think) and H2 and SF
are the most straightforward
observables.

Diffuse (Atomic) .. Dense
Gas This is the current most commonly | oo
studied link at galaxy scales. Gas
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Rut Oni.v Dense Cras Forms Skars

Extragalactic
(lonized) Gas

“Dense Gas Threshold”

In the Milky Way stars form
overwhelmingly inside the high
density parts of a cloud. Linking star
formation to the dense structures is @
huge part of Galactic star formation.

Diff Atomi D
| Useg(gsomlc) This is, e.g., the topic probed by HCN- (Mo|eer§ﬁgr)
star formation comparisons. Gas
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Linking Clouds to Galaxies

“Cloud Structure / Populations”

If dense gas (or gas density) is the
end of the story, substructure within
clouds and the properties of the
cloud population are the key aspect
mediating star formafion. In the
Galaxy this could be “PDF" or
“filament formation” depending on
your distance.
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Global Scaling Relations

1 point = 1 galaxy 30 galaxies, 1 point = 1 kpc region
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Beyond Global Scaling Relations
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Modeling KS Law Scatter

Measure of the gas-to-stellar flux ratio focussing on:

gas peaks

Gas | Fit depends on:
NGC4321: stars * Cloud lifetime

* Separation scale

] * Feedback timescale

&

These provide:
| * Feedback velocity and efficiency
l * Mass loading factor
o N  Star formation efficiency
10° 10 0* * Diffuse gas fraction

10°F

12:23:00

Gas-to-stellar flux ratio

—_

NGC 5068
NGC 0628
NGC 3351

NGC 4535
NGC 4254 Fit: Kruijssen et al. 2018
Cf. Schruba+ ‘10, Onodera+ ‘10,
Kruijssen & Longmore ’14,
Chevance+ in prep.
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Global Scaling Relations & Milky Way Measurements
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HCN (1-0)

EMPIRE Survey, Bigiel+ '16, Jimenez-Donaire+
‘17a,b, Cormier+ ’18, Gallagher+ ‘18

Mé67in CO (ALMA)

PHANGS Collaboration, Leroy+ in prep.,
Schinnerer+ in prep.



Star Formation Thresholds in the MW and Beyond
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Star Formation Thresholds in the MW and Beyond
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lonized ISM: High resolution CO/Halpha/Star cluster comparisons

Ongoing/future work: PHAT, LEGUS, PHANGS, SDSSV/LVM
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* Time evolution makes interpreting direct comparisons on small (<50pc) scales challenging

How to link the small scale (feedback) physics across different tracers? (stars/clusters,
HIl regions, H,)



lonized ISM: Diffuse lonized Gas Ongoing/future work:
MaNGA, CALIFA, PHANGS, SDSSV/LVM
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* Characterized by extended morphology, higher temperature, lower density than
HII regions.

* lonized by leaky HIl regions? old hot stars? shocks? (Zhang+2017)

* ~50% of Halpha emission, should it be accounted for in SFR? How?



lonized ISM: Metal Enrichment & Mixing
Ongoing/future work: TYPHOON, PHANGS
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* Chemical enrichment Intimately related to the feedback (Emerick’s talk)
* How does localized enrichment along spiral arms impact future generations
of star formation?

Ho+2017



The multi-phase ISM drives galaxy evolution
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Volume in the ISM is filled with hot ionized, warm ionized & neutral gas
Masss is mostly in warm/cold & molecular medium

Ambient density of supernova explosions determines their impact
Stable hot volume filling phase drives outflows
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Walch et al. 2015, figure from Naab & Ostriker 2017

The impact of SN location on ISM properties (SILCC)

z (kpc)

y (kpc)

peak SNe
Time: 50.0 Myr

mixed SNe random SNe

0.6

The ambient density of
supernova explosions
{10-2 determines the fate of the

ISM and outflows (Girichidis et
al. 2016, Gatto et al. 2016)
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Various physical processes
impact ISM structure &
ambient densities of SNe:
walkaway/runaway OB stars,
105 stellar winds, radiation,

clustered SNe (Mac Low+,
] Hennebelle+, Ostriker+, Martizzi+
101 8 etc.)
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Kim, Kim & Ostriker 2011, Hennebelle & Iffrig 2014, Walch et al. 2015, Girichidis et al. 2016, Naab & Ostriker
2017, Gatto et al. 2016, Li et al. 2016




Star formation in dwarf galaxies

time = 000 Myr
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Simulations with chemical network, radiation and feedback from individual stars
(individual tracks), see Emerick

Hu, Naab et al. 2017




Follow the feedback driven matter cycle
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Comparison to observations at different wavelengths
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Comparison to observations at different wavelengths
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t = 57.2 Myr
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Ambient densities of SNe are important
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o Ambient densities are not only regulated by ‘feedback’ but also by
‘walkaways’

o Lower ambient densities — higher outflow rates




Star formation in dwarf starbursts
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Discussion points

How can we compare Galactic, sub-cloud-scale work to extragalactic measurementsin a
useful way (scales and tracer)?

The star formation efficiency in dense gas: is it constant, how is it regulated, formation
thresholds, galaxy centers, etc.

How to link the small scale (feedback) physics across different tracers (star clusters, Hll
regions, H2) that are uncorrelated via their time evolution?

How should we treat diffuse ionized gas? Does its distribution match simulations?

Does localized chemical enrichment impact future generations of star formation, oris it
too quickly diffused/mixed?




Discussion points

Which feedback processes are required to get the right picture? And which picture? Is outflows
all we care about?

Which spatial and time resolution is required to get a multi-phase ISM? Is 0.1 pc enough?
How important is thermal conduction?

How important is non-equilibrium chemistry?

Do magnetic fields change star formation — on galactic scales?

How do we assess uncertainties in the modeling?

Which observational diagnostics should we use for the validation/falsification of the model?
How much freedom is there in post-processing?

How do we quantify the “success” of a model?




Discussion points

“Small scale” simulations will not reproduce galaxy populations? Is this a problem?
How do we quantify the “success” of a model?

Should theorists publish all material (code versions, analysis scripts, data) to make results
reproducible?

What do we do with “numerically correct” simulations which give “wrong” results?

Do observers ask too much of the models? “Fitting” models are “promoted”




