

The emergence of Low Surface Brightness Galaxies

Arianna Di Cintio Marie Curie IF @IAC

In collaboration with C.Brook, A.Maccio', A.Dutton

DIGESTIVO Project

DIffuse Galaxy Expansion SignaTures In Various Observables project: understanding the emergence of diffuse, low surface brightness galaxies and the link to their dark matter haloes

~1000 UDGs in Coma cluster

Low surface brightness objects with LUMINOSITY of dwarfs ($M^* = 10^{7-9}$ Msun) but SIZES of Milky Way-type spirals. Are they formed outside of clusters?

Can LCDM predict and explain the existence of such low surface brightness objects?

Pls Maccio', Dutton

- Gasoline 2.0-blastwave feedback a la Stinson+06
- Planck Cosmology
- 125 high resolution (zoomed) galaxies
- more than 10⁶ particles in each halo
- $10^5 10^{11} M_{\odot}$ stellar mass range $(5x10^8 5x10^{12} M_{\odot})$
- 100 times better resolution than ILLUSTRIS
- 50 times better resolution than EAGLE volume
- 10 times more galaxies than FIRE (13 vs. 120)

From gas outflows to DM 'cores'

Core formation mechanism -> outflows driven by SNae feedback

NIHAO galaxies form DM cores

Peak of core formation at $\log(M^*/Mhalo)\sim -2.4 \rightarrow M^*\sim 10^{8.5} Msun$ (Di Cintio+14) Core created during starburst events that launch powerful gas outflows

Di Cintio +14 a,b Chan+15 Tollet+16

Dark matter profiles determined by two opposite effects: energy from Sne vs gravitational potential of the DM halo

Formation scenario of UDGs

SFH Observational Predictions

The largest isolated UDGs should contain more HI gas, have a larger baryon fraction and a more extended and bursty SFH than less extended dwarfs of similar M*

Di Cintio +17 (see also Onorbe+15, Read+16 for core size dependence on SFH in smaller haloes)

CDM+ baryonic physics Predictions for UDGs!

Halo mass of dwarfs

OBS VERIFIED!

Found in isolation

- **WORK IN PROGRESS**
- Gas rich => the largest ones have higher gas fraction
- Bluer in field than in cluster
- Large gas extent
- ALFALFA dark galaxies can harbor UDGs
- Correlation between SFH and size
- Sersic index n~1
- Dark matter core!

Is the formation mechanism of LSBs the same as the UDGs'one?

 (Surprisingly?) the formation scenario of large LSBs (Mstar~10^{9.5-10}M_{sun}) is different than the one of small UDGs (Mstar~10⁷⁻⁹M_{sun})

And so are the observational predictions ...

Selection of LSB in NIHAO

9.8 < log(M*/Msun) < 9.5 Reff>1 kpc 20 < Sbeffv/(mag/arcsec2) < 25.0 Mhalo~2-5 x 10^11 Msun

What causes the large spread in size – or surface brightness- at a fixed stellar mass?

What makes LSBs?

Work in progress..check out the paper on arxiv soon!

Conclusions

- UDGs formation mechanism is solely based on internal feedback driving gas outflows and generating DM and stellar "expansion". Obs signatures: largest gas fraction for largest Reff
- For LOW SURFACE BRIGHTNESS OBJECTS, Mstar~10⁹M_{sup} represents the

Diversity of SBs in the 'classic' LSBs regime is a reflection of the variety of