Dark Matter halo response to gas inflows and outflows

Aaron A. Dutton

New York University Abu Dhabi

15th Potsdam Thinkshop - September 2018

The NIHAO team and collaborators

- Andrea V. Macciò (X)
- Aaron A. Dutton (V, IX, XII, XVII)
- Liang Wang (I, VII)
- Greg S. Stinson (III)
- Aura Obreja (VI, XVI)
- Tobias Buck (XIII, XV)
- Thales A. Gutcke (VIII)
- Arianna Di Cintio (XI)
- Iryna Butsky (II)
- Edouard Tollet (IV)
- Isabel M. Santos-Santos (XIV)
- Silviu M. Udrescu
- Marvin Blank

- Xi Kang
- Chris Brook
- Camilla Penzo
- Ben Keller
- James Wadsley
- Jonas Frings
- Avishai Dekel
- Rosa Domínguez-Tenreiro
- · Gian Luigi Granato
- Jacob Herpich
- Jeremy D. Bradford
- Tom R. Quinn
- Ben Moster
- Glenn van de Ven
- Ling Zhu

Cold Dark Matter works on large scales

Cold Dark Matter fails on small scales

Garrison-Kimmel, Boylan-Kolchin, Bullock, Kirby 2014

Cold Dark Matter fails on small scales

Moore et al. 1994, Flores & Primack 1994, de Blok et al. 2001, 2008, ...

Discrepancy: Factor ~2 in velocity ⇒ factor ~ 4 in mass

4.6 kpc

Cold Dark Matter works on small scales

SN driven gas outflows can expand the dark matter halo

e.g., Navarro, Eke, Frenk 1996; Read & Gilmore 2005; Mashchenko et al. 2006, 2008; Governato et al. 2010; Pontzen & Governato 2012; Teyssier et al. 2013; Di Cintio et al. 2014a,b; Chan et al. 2015; Trujillo-Gomez et al. 2015

NIHAO XIV - Santos-Santos et al. 2018 - see poster

What determines how Galaxy Formation modifies the Dark Matter distribution in LCDM simulations?

M_{star} / M_{halo}

n

Star Formation Efficiency

Star Formation Threshold

Toy Model

Consider a shell of radius r_i and mass M_i

(Blumenthal+1986)

Adiabatic Inflow
$$\frac{r_{\rm a}}{r_{\rm i}} = (1-f_{\rm in}), \quad \frac{M_{\rm a}}{M_{\rm i}} = \frac{1}{(1-f_{\rm in})}.$$
 Contraction

Impulsive Outflow
$$\frac{r_{\rm f}}{r_{\rm a}} = \frac{1-f_{\rm out}}{1-2f_{\rm out}}, \quad \frac{M_{\rm f}}{M_{\rm a}} = 1-f_{\rm out}.$$
 Expansion

1 cycle
$$f_{\text{out}} = \beta f_{\text{in}}$$

1 CYCle
$$f_{
m out} = eta f_{
m in}$$
 $rac{r_{
m f}}{r_{
m i}} = rac{(1-eta f_{
m in})(1-f_{
m in})}{1-2eta f_{
m in}}, \quad rac{M_{
m f}}{M_{
m i}} = rac{1-eta f_{
m in}}{1-f_{
m in}}.$

$$rac{r_{
m f}}{r_{
m i}} = \left[rac{(1-f_{
m in})(1-eta f_{
m in})}{(1-2eta f_{
m in})}
ight]^N, \quad rac{M_{
m f}}{M_{
m i}} = \left[rac{1-eta f_{
m in}}{1-f_{
m in}}
ight]^N$$

NIHAO IX - Dutton et al. 2016b

Toy Model

N cycles
$$\beta=1$$
 $r_f/r_i=(1-2f+f^2)^N/(1-2f)^N$

Net Expansion

$$r_f/r_i = 1 + N f^2 + O(f^3)$$

- Need many cycles, with f≥0.1 to generate significant expansion
- If outflow events are small, then halo cannot expand much

NIHAO IX - Dutton et al. 2016b

Halo Response depends on Star Formation Efficiency

Di Cintio et al. 2014a, MaGICC simulations (Stinson et al. 2013)

Halo Response depends on Star Formation Efficiency

Tollet et al. 2016, MNRAS, 456, 3542

Halo Response depends on Star Formation Efficiency

Di Cintio et al. 2014, Chan et al. 2015, Tollet et al. 2016

Bullock & Boylan-Kolchin 2017

Star Formation Threshold is a common sub-grid parameter in galaxy formation simulations

Hydrogen Density / cm³

Re-simulate 20 NIHAO haloes with three SF thresholds n=10,1,0.1 n_H cm⁻³

Stellar Mass vs Halo Mass

Abundance Matching Moster et al. 2018

re-calibrated efficiency for n=0.1

NIHAO XIX - Dutton et al. 2018 in prep

Enclosed Dark Matter Density Profiles

NIHAO XIX - Dutton et al. 2018 in prep

Halo Response depends on (Mstar/Mhalo, n)

TBTF problem for field Dwarf Galaxies

TBTF problem for field Dwarf Galaxies

How do we test which SF threshold is most realistic?

Re-simulate 20 NIHAO haloes with three SF thresholds n=10,1,0.1 n_H cm⁻³

NIHAO project - NYUAD / MPIA

Higher SF threshold gives more bursty SFH

Scatter in SFR - Mstar Relation

SF threshold

Summary

- Low threshold star formation (n≤1) EAGLE / APOSTLE / ILLUSTRIS produces cuspy haloes (⇒CDM fails!)
- High threshold star formation (n≥10) NIHAO/FIRE produces expanded haloes when 0.001 < M_{star}/M_{halo} < 0.01 (CDM ok)
- Field galaxies in LG with M_{star} ~ 10⁷ favor high threshold (Need more observations to improve statistics)
- High threshold yields 2x larger scatter in sSFR measured over 5 Myr timescale. Testable with Halpha?