Understanding the fountain-corona interaction

Filippo Fraternali

Kapteyn Astronomical Institute, University of Groningen, The Netherlands

Why is everybody showing M82?

Because it is an "exceptional" galaxy!

SDSS HI - VLA

NGC3077

Milky Way *Gaia collaboration 2018*

Filippo Fraternali (Groningen) Thinkshop: role of feedback, Potsdam – 5 Sept 2018

Yun et al. 1997

 $M82$

M81

Galaxies at z=1 and z=2

Growth of the Milky Way's disc

Chemical evolution models G-dwarf problem

Larson 1972; Tynsley 80; Tosi 1988; Chiappini et al. 1997, 2001; Boissier & Prantzos 1999; Matteucci+ 2009; Schoenrich & Binney 2009

Need for metal-poor gas accretion at ~ $1 \overline{M_{\odot}/yr}$

Snaith et al. 2015

Galactic fountain and corona condensation

Fraternali F., "Gas accretion via condensation and fountains", 2017, ASSL - Springer, 430, 323 – review chapter

Massive local circulation

Filippo Fraternali (Groningen) Thinkshop: role of feedback, Potsdam – 5 Sept 2018

Mixing promotes corona condensation/accretion

Condensation is persistent

Filippo Fraternali (Groningen) Thinkshop: role of feedback, Potsdam – 5 Sept 2018

Modification of orbits

Filippo Fraternali (Groningen) Thinkshop: role of feedback, Potsdam – 5 Sept 2018

Data require fountain accretion

Filippo Fraternali (Groningen) Thinkshop: role of feedback, Potsdam – 5 Sept 2018

Fountain accretion in the Milky Way

Ionized gas around the MW

This model reproduces:

- Positions & velocities of 95% absorbers
- Average column density
- Number of absorbers along the l.o.s.
- High velocity dispersions of absorbers

 $'Warm' \ accretion: ~1 M_{\odot}/yr$

Condensation: different temperatures

Angular momentum of the accreting gas

Disc growth

A cosmologically motivated corona

1.0

 0.8

 0.6 $\tilde{\psi}(j)$ 0.4

 0.2

 0.0

 $\overline{0.5}$

 1.5

 $\overline{2.0}$

 j/j_{tot}

 2.5

 $\overline{30}$

 $\overline{35}$

Starting points:

1. Angular momentum distribution (ψ) $\psi \equiv \frac{d\mathbf{x} \cdot \mathbf{z}}{d\mathbf{x}}$

Key assumption: AMD of baryons = AMD of dark matter

- 2. Galactic potential
- 3. Barotropic corona (e.g. isothermal)

Pezzulli, Fraternali & Binney 2017, MNRAS Analytical method

Density & rotation of the corona functions of temperature

If the corona in contact with the disc has $j_{\rm cor}$ $>$ $j_{\rm disc}$

Galactic corona

Dark matter

From Tidal Torques

Peebles 1969; Bullock et al.

2001; Sharma & Steinmetz 2005

Corona rotation & angular momentum

Filippo Fraternali (Groningen) Thinkshop: role of feedback, Potsdam – 5 Sept 2018

How to reconcile this with strong feedback

How to make a disc galaxy

z> 2 Cold gas accretion phase -> disc formation Feedback very effective

z~1-2 Mass threshold reached -> corona formation

z< 1 Corona cooling phase -> growth of disc Feedback -> can keep inner corona hot? Fountain -> corona accretion

Merger / infall into cluster YES -> cold gas ends -> quenching NO -> SF keeps going on until T too large

Conclusions

1) Galactic fountain

Circulates a large mass (more than winds) Triggers the condensation of lower corona Many observable reproduced, how do we incorporate with the rest?

2) Angular momentum

Accretion must occur at high *j*

Corona can be consistent with inside-out growth

Thanks!

Do galaxies keep the heating high?

What is the effect of this on the corona cooling and gas accretion? *Bland-Hawthorn+ 2013 Su et al. 2015*

> 3) Local sources *Cantalupo et al. 2010*

Ultra-luminous Xray sources 2)

Insane luminosity $L_x \sim 10^{40-10^{41}}$ erg s⁻¹

This is L_x of M87 BH!

Filippo Fraternali (Groningen) Thinkshop: role of feedback, Potsdam – 5 Sept 2018

High-res simulations

Kim & Ostriker 2018

HOT gas around galaxies

Filippo Fraternali (Groningen) Thinkshop: role of feedback, Potsdam – 5 Sept 2018

Local angular momentum problem

Angular momentum distributions

Filippo Fraternali (Groningen) Thinkshop: role of feedback, Potsdam – 5 Sept 2018

The effect of thermal conduction

Filippo Fraternali (Groningen) Thinkshop: role of feedback, Potsdam – 5 Sept 2018

Modified corona

Figure 5. Similar to Fig. 4, but assuming that a Galactic wind expelled the low angular momentum material from the halo, leaving a surviving mass equal to a fraction $m = 0.4$ (upper panels) or $m = 0.1$ (lower panels) of the initial value. Note that in these models the average specific angular momentum of the corona is larger than l_1 (see text). The rotation velocity is high in the centre, but declines very steeply with radius. The angular momentum rises relatively slowly and even the model with the most extreme feedback $(m = 0.1)$ is only marginally compatible with driving inside-out growth, since l becomes larger than l_d only at the edge of the Galactic disc.

Pezzulli, Fraternali & Binney 2017, MNRAS

A cosmologically motivated corona

Strong Feedback

Classical problems in galaxy formation:

- Halo mass function vs stellar mass function
- Angular momentum of discs -> scaling relations
- Missing satellites, cusps, too big to fail etc.

-> Solved by: Very strong feedback

Resolution Convergence

NO thermal conduction NO thermal conduction

Filippo Fraternali (Groningen) Thinkshop: role of feedback, Potsdam – 5 Sept 2018

Gas accretion needed to feed star formation

Chemical evolution models G-dwarf problem

Larson 1972; Tynsley 80; Tosi 1988; Chiappini et al. 1997, 2001; Boissier & Prantzos 1999; Schoenrich & Binney 2009

Deuterium in local ISM appears to be re-supplied *Linsky et al. 2006*

 \sim constant SFR in the MW (thin) disk *Aumer & Binney 2009; Fraternali & Tomassetti 2012; Haywood et al. 2016*

Need for metal-poor gas accretion At ~ 1 M_{\odot}/yr

Gas depletion time \sim 1 Gyr

$$
t_{depl} = M_{gas} / SFR
$$

Genzel et al. 2015

Summary so far

- 1. Condensation of the lower corona at rate ~1 Mo/yr -> feeds star formation
- 2. Explains MW extraplanar gas kinematics (HI and ionised)
- 3. Explains formation of high-velocity clouds
- 4. Predicted the rotation of the corona (lag 70-100 km/s)

Detection of accretion? (absorption III)

Filippo Fraternali (Groningen) Thinkshop: role of feedback, Potsdam – 5 Sept 2018

3) Do real galaxies explode? (III)

Blue compact dwarfs HI velocity fields

They are tiny super starburst

Very rare: \sim 1% of the irregulars

HI observations ~ Half of them regular rotation, most have some rotation

Similar gas fraction than *quiescent* irregulars

Filippo Fraternali (Groningen) Thinkshop: role of feedback, Potsdam – 5 Sept 2018

3) Do real galaxies explode? (I)

FIRE simulation

Formation of a Milky Way galaxy

Movie credit: P. Hopkins

M82 inner disk – [Ne II] 12.8 μm

Velocity field – regular rotation

Achtermann & Lacy 1995

Filippo Fraternali (Groningen) Thinkshop: role of feedback, Potsdam – 5 Sept 2018

M82: a special galaxy

 $z=2.2$

Things we may be missing

Feedback is used to get rid of cold gas: why is there so much cold gas?

Numerical effects really under control?

1. Maybe explore more preheating/preventive feedback? (e.g. *Lu+ 2015*)

- 2. Do we understand cooling?
	- are equilibrium functions good enough? (*Gnat 2017*)
	- should we include turbulence? (*Gray, Scannapieco & Kasen 2015*)
- 3. Do we understand heating?
	- large uncertainties in the EUVB
	- photons from local sources? (*Cantalupo 2010*)
	- about X-ray binaries/ULXs? (*Prestwich et al. 2015*)
	- and *small* black holes (*Su et al. 2015)*?
	- do we believe CLOUDY too much?
- 4. Magnetic fields, CRs and thermal conduction?
- 5. Different dark matter? Would affect SF feedback?

Ultra-luminous X-ray sources

Insane luminosity

2) Different simulations use different recipes

Galaxy formation in cosmological simulations with different codes

Scannapieco et al. 2012

"Despite the common halo assembly history, we find large code-to-code variations in the stellar mass, size, morphology and gas content of the galaxy at $\bar{z} = 0$, due mainly to the different implementations of star formation and feedback."

1) Energy requirement

2) Different recipes and calibrations

Thermal feedback

- Gas heated to $log(T/K)=7.5$ stochastically
- Efficiency function of Z and **ρ** can be up to 300%

AGN reaches higher temperatures

Star formation

- Threshold depending on Z
- SFR function of pressure

And more ways

Switching off cooling (*Stinson et al. 2006*) Strong thermal conduction *(Keller et al. 2014*) Radiation pressure + momentum injection (*Hopkins et al. 2012, 2014)*

EAGLE Illustris(TNG)

Schaye et al. 2015 Vogelsberger et al. 2013, Pillepich et al. 2017

Kinetic feedback

- Hydro OFF until particles leave the ISM
- Mass loading set by SFR
- Velocity set by DM AGN is a mixture

Star formation

- Threshold in density
- SFR depending on t_{ff} ⁻¹

What does this mean? What are we learning?

Cooling in the wake

Fraternali et al. 2013, ApJL

C II, Si II, Si III, ... $4.3 <$ logT $<$ 5.3 K *Lehner & Howk 2011, Science Lehner et al. 2012, MNRAS Shull+ 2009, ApJ*

Ionized gas in the MW

This model reproduces:

- Positions & velocities of 95% absorbers
- Average column density
- Number of absorbers along the l.o.s.
- High velocity dispersions of absorbers

'Warm' accretion: ~1 M_{\odot}/yr

High-velocity clouds Smith cloud

Complex C

Filippo Fraternali (Groningen) Thinkshop: role of feedback, Potsdam – 5 Sept 2018

Hydrodynamic simulations

Marinacci+ 2010; Armillotta, Fraternali+ 2016, MNRAS

Corona is rotating more slowly than the disc

 $T_{\text{corona}} = 2 \times 10^6 \text{ K}$

$$
Z_{\text{corona}} = 0.1 Z_{\odot}
$$

$$
Z_{\text{cloud}} = 1 Z_{\odot}
$$

 $\nabla\!{\bf \bigvee}$

Oosterloo, Fraternali & Sancisi 2007

Extraplanar HI

longitude

Galactic

10-25% of the total HI mass

$$
h \sim 1-2~\text{kpc}
$$

Marasco & Fraternali 2011 Galac

Not in hydro simulations (Marasco, Debattista, Fraternali+ 2015)

Filippo Fraternali (Groningen) Thinkshop: role of feedback, Potsdam – 5 Sept 2018

Indirect evidence very clear

Chemical evolution models G-dwarf problem

Larson 1972; Tynsley 80; Tosi 1988; Chiappini et al. 1997, 2001; Boissier & Prantzos 1999; Schoenrich & Binney 2009, Pezzulli & Fraternali 2016

Deuterium in local ISM appears to be re-supplied *Linsky et al. 2006*

 \sim constant SFR in the MW (thin) disk *Aumer & Binney 2009; Fraternali & Tomassetti 2012; Haywood et al. 2016*

Gas depletion time \sim 1 Gyr

 $t_{\text{depl}} = M_{\text{gas}}$ / SFR

Need for metal-poor gas accretion At ~ 1 M_{\odot}/yr

Genzel et al. 2015

Detection of accretion? (HI emission)

Masses $<$ few x 10⁶ M_®

Includes He and factor 2 of ionised gas! Accretion from HVCs $\sim 0.08 M_{\odot}/\rm{yr}$

Putman, Peek, Joung 2012, ARA&A

Origin not clear: probably mixing between disc and ambient material

(e.g. *Fraternali et al. 2015*)

Accretion of Magellanic Stream: $M_{HI} \sim 2 \times 10^8 M_{\odot}$,

much more ionised (*Bland-Hawthorn et al. 2007, Fox et al. 2014*)

Will it happen? How often does it happen?

External nearby galaxies: several studies using GBT, Parkes, Arecibo

-> NO significant population of floating HI clouds (NHopefully this will improve

Pisano et al. 2004, Zwaan et al. 2005, Kovac et al. 2009, with SKA and precursors *Chynoweth et al. 2009, Haynes et al. 2011, Westmeier+ 2017*

Detection of accretion? (absorption II)

This is above $N_{HI} \sim 10^{20}$ cm⁻² (very high column density)

Below there will much more

e.g. the Magellanic Stream covers 25% of the sky (e.g. *D'Onghia & Fox 2016*)

Filippo Fraternali (Groningen) Thinkshop: role of feedback, Potsdam – 5 Sept 2018

1) High energy requirement $E_{\rm K} = \eta \, {\rm SNR} \, E_{\rm SN}$ Energy available from supernovae IF this all goes into outflow $\dot{M}_{\text{out}} \simeq 1 \left(\frac{\eta}{0.1}\right) \left(\frac{\text{SFR}}{1 M_{\odot} \text{ yr}^{-1}}\right) \left(\frac{v_{\text{out}}}{300 \text{ km s}^{-1}}\right)^{-2} M_{\odot} \text{ yr}^{-1}$ See *Murray+ 05*Dwarf galaxies can eject potentially to r_{vir} Milky Way $v_{esc} \sim 800$ km/s -> and this is only gravity...

Strong feedback in cosmo simulations essentially means $\eta \sim 1$ usually justified because there may be other sources: winds, CRs…

Limited resolution of simulations -> to achieve high efficiencies recipes are needed

Kinetic energy + switching off hydrodynamics (*Springel & Hernquist 2003*) + switching off cooling (*Stinson et al. 2006*) Thermal feedback: very high T -> no cooling (*Dalla Vecchia & Schaye 2012)* Strong thermal conduction *(Keller et al. 2014*)

2) Different simulations use different recipes

Thermal feedback

- Gas heated to $log(T/K)=7.5$ stochastically
- Efficiency function of Z and $ρ$ can be up to 300%

AGN reaches higher temperatures

What is this? Two ways to \parallel limitations? form galaxies? How many

- Star formation - Threshold de $\frac{O(1151 \text{ Ways})}{2}$ other ways are there?
- SFR function of pressure

EAGLE Illustris(TNG)

Schaye et al. 2015 Vogelsberger et al. 2013, Pillepich et al. 2017

Kinetic feedback

- Hydro OFF until particles leave the ISM
- Mass Are we learning something or

- Velocity set by DM AGN is a compensating for numerical

Star formation

- Threshold in density
- SFR depending on t_{ff} ⁻¹

Gas accretion from corona

Condensation efficiency & galaxy evolution

Armillotta, Fraternali, Marinacci 2016, MNRAS

The effect of thermal conduction

Filippo Fraternali (Groningen) Thinkshop: role of feedback, Potsdam – 5 Sept 2018

Condensation: different temperatures

Filippo Fraternali (Groningen) Thinkshop: role of feedback, Potsdam – 5 Sept 2018

Possible Evolution

Survival of clouds

Armillotta, Fraternali, Werk, Prochaska & Marinacci 2017, MNRAS

Filippo Fraternali (Groningen) Thinkshop: role of feedback, Potsdam – 5 Sept 2018

How long do these clouds survive?

Armillotta, Fraternali+ 2017, MNRAS

Cold gas can survive for hundreds of Myr -> tens of kpc

Properties are shaped by turbulent mixing and thermal Away from galaxies cold clouds conduction tend to evaporate in the corona

Things we may be missing

Feedback is used to get rid of cold gas: why is there so much cold gas?

Numerical effects really under control?

1. Maybe explore more preheating/preventive feedback? (e.g. *Lu+ 2015*)

- 2. Do we understand cooling?
	- are equilibrium functions good enough? (*Gnat 2017*)
	- should we include turbulence? (*Gray, Scannapieco & Kasen 2015*)
- 3. Do we understand heating?
	- large uncertainties in the EUVB
	- what about heating from local sources? (*Cantalupo 2010*)
	- what about X-ray binaries/ULXs? (*Prestwich et al. 2015*)
	- and *small* black holes (*Su et al. 2015)*?
	- do we believe CLOUDY too much?
- 4. Magnetic fields, CRs and thermal conduction?
- 5. Different dark matter? Would affect SF feedback?