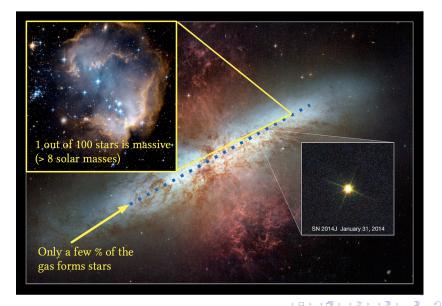
Cooler and smoother – the impact of cosmic rays on the phase structure of galactic outflows

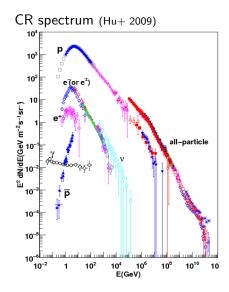
Philipp Girichidis

Georg Winner, Christoph Pfrommer (AIP) Thorsten Naab (MPA Garching), Stefanie Walch (University of Cologne) Michał Hanasz (Copernicus University Torun)

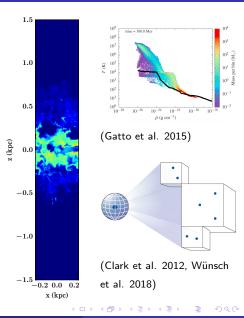

AIP Potsdam

September 5, 2018

Observations: starburst galaxy M82 (Hubble)


Observations: starburst galaxy M82 (Hubble)

- strong outflows with $\eta=\dot{M}_{\rm outflow}/\dot{M}_{*}$ of a few
- outflows in all chemical phases (ionized molecular)


CRs in the ISM

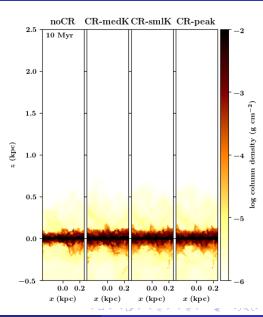
- CRs: $E_{\rm CR} \sim E_{\rm mag} \sim E_{\rm th} \lesssim E_{\rm kin}$ (Ferriere 2001)
- inefficient cooling (contrast to gas) different transport properties
- couple to gas via magnetic fields
- advection-diffusion approximation
- Galactic CRs generated in SN remnants (DSA, Axford et al. 1977; Krymskii 1977; Bell 1978; Blandford & Ostriker1978; Malkov & OC Drury 2001, Caprioli & Spitkovsky 2014)
- efficiency: 10% of SN energy

Setup for ISM simulations

- stratified box (deAvillez+2004, 2005, Kim & Ostriker+ 2013 - 2018, Hennebelle & Iffrig 2015)
- external potential (ρ_* , DM)
- Magnetohydrodynamics
- atomic, mol., metal cooling (follow H⁺, H, H₂, C⁺, CO) (Glover et al. 2012, Walch et al. 2015)
- shielding effects ($A_{\rm V}>1)$
- stellar feedback (SNe + CRs)
- MW conditions: $10 \frac{M_{\odot}}{\mathrm{pc}^2}$, Z_{\odot}

Combined MHD-CR equations (Girichidis+2016a)

based on MHD-Solver HLLR3 (Bouchut et al. 2007, 2010, Waagan et al. 2009, 2011)

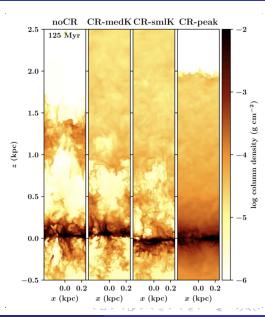

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0\\ \frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot \left(\rho \mathbf{v} \mathbf{v} - \frac{\mathbf{B} \mathbf{B}}{4\pi} \right) + \nabla p_{\text{tot}} = \rho \mathbf{g}\\ \frac{\partial e_{\text{tot}}}{\partial t} + \nabla \cdot \left[(e_{\text{tot}} + p_{\text{tot}}) \mathbf{v} - \frac{\mathbf{B} (\mathbf{B} \cdot \mathbf{v})}{4\pi} \right] &= \rho \mathbf{v} \cdot \mathbf{g} + \nabla \cdot (\mathbf{K} \cdot \nabla e_{\text{cr}}) + Q_{\text{cr}}\\ \frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) &= 0\\ \frac{\partial e_{\text{cr}}}{\partial t} + \nabla \cdot (e_{\text{cr}} \mathbf{v}) &= -p_{\text{cr}} \nabla \cdot \mathbf{v} + \nabla \cdot (\mathbf{K} \cdot \nabla e_{\text{cr}})\\ + Q_{\text{cr}} \end{split}$$

similar to Hanasz & Lesch 2003, Pfrommer et al. 2017

Time evolution with and without CRs (Girichidis+ 2018a)

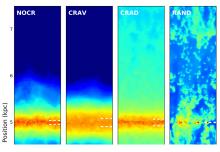
same SN rate

- Ieft: no CRs
- middle: CRs
 - medK: $K_{\parallel} = 3 \times 10^{28} \frac{\text{cm}^2}{\text{s}}$ - smlK: $K_{\parallel} = 1 \times 10^{28} \frac{\text{cm}^2}{\text{s}}$
- right: CRs, SNe in peaks assume SNe explode where stars formed
- data publicly available: girichidis.com https://silcc.mpa-garching.mpg.de


Time evolution with and without CRs (Girichidis+ 2018a)

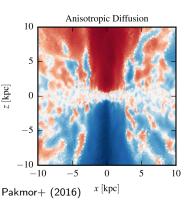
same SN rate

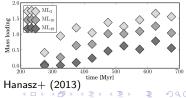
- Ieft: no CRs
- middle: CRs


- medK:
$$K_{\parallel} = 3 \times 10^{28} \frac{\text{cm}^2}{\text{s}}$$

- smlK: $K_{\parallel} = 1 \times 10^{28} \frac{\text{cm}^2}{\text{s}}$

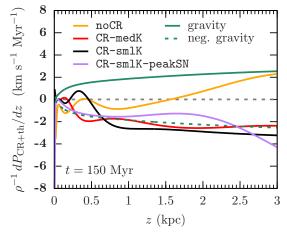
- right: CRs, SNe in peaks assume SNe explode where stars formed
- data publicly available: girichidis.com https://silcc.mpa-garching.mpg.de


Other studies


- ISM: Hanasz+ (2009), Simpson+ (2016), Ruszkowsky+ (2017), Farber+ (2018)
- Galaxy (isotropic diff.): Booth+ (2013), Salem+ (2014), Pakmor+ (2016), Jacob+ (2018)
- Galaxy (anisotropic diff.): Yang+ (2012), Hanasz+ (2013), Pakmor+ (2016), Pfrommer+ (2017)

Simpson+ (2016) Philipp Girichidis (AIP Potsdam)

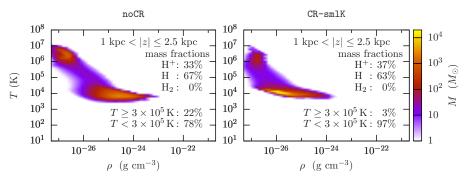
CRs & galactic outflows



September 5, 2018

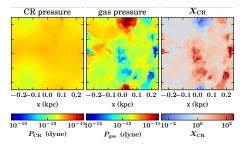
9 / 18

Net force balance

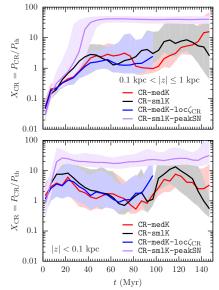


- thermal SNe: locally strong accelerations, temporal fluctuations
- incl. CR: smoother forces, net outward pointing force
- for slow CR diffusion: net pressure gradient exceeds gravity

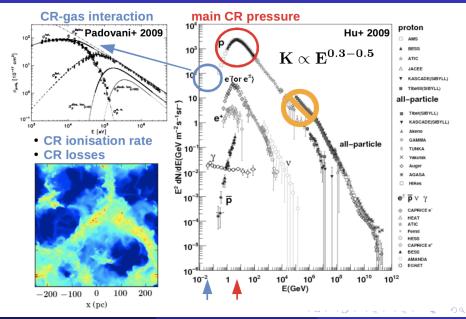
10 / 18


Outflow strength and composition

- CRs drive stronger outflows from the disk
- effective mass loading factors maesured at $2.5\,\rm kpc$ $\eta_{therm}\approx 0.1$ (Kim+2018), $\eta_{cr}\sim 0.7-1.4$ (Mao+2018)



- Thermal run produces more hot gas.
- CR-driven outflows have same ionisation degree.


CR pressure and $X_{\rm CR}$

- smooth energy CR distribution
- CR pressure dominates in the disk
- region above the disk: equipartition
- locally varying $\zeta_{\rm CR}$ no effect

CR spectrum

Philipp Girichidis (AIP Potsdam)

September 5, 2018 13 / 18

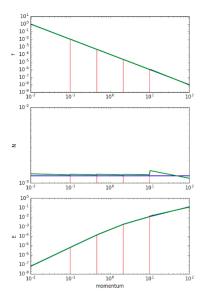
CR equations

start with Fokker-Planck equation

$$\begin{split} \frac{\partial f}{\partial t} &= \underbrace{-\mathbf{u} \cdot \nabla f}_{\text{advection}} + \underbrace{\nabla \left(\kappa \nabla f\right)}_{\text{diffusion}} + \underbrace{\frac{1}{3} \left(\nabla \cdot \mathbf{u}\right) p \frac{\partial f}{\partial p}}_{\text{adiabatic process}} \\ &+ \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_p \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} + \underbrace{\frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 \left(b_l f + D_p \frac{\partial f}{\partial p} \right) \right]}_{\text{sources}} \end{split}$$

other losses and Fermi II acceleration

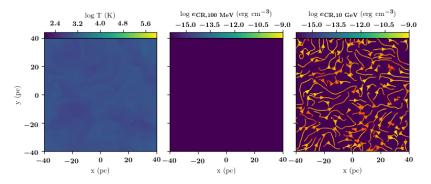
• chose piecewise powerlaws for f


$$f(p) = f_{\rm f} \left(\frac{p}{p_{\rm f}}\right)^{q_i},$$

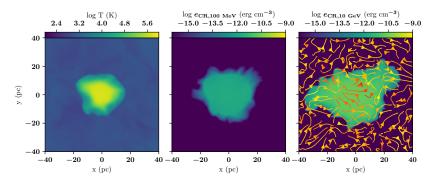
• derive number density and energy density

$$\mathbf{n}_{i} = \int_{p_{i}}^{p_{i+1}} 4\pi p^{2} f(p) \, dp \qquad \mathbf{e}_{i} = \int_{p_{i}}^{p_{i+1}} 4\pi p^{2} f(p) T(p) \, dp$$

• see also Miniati 2001, Yang+ 2017


Spectral grid

- chose logarithmic bins in p
- compute spectrum in every cell
- $\bullet\,$ compute changes of n and e
- $\bullet\,$ reconstruct distribution function f,q
- standalone code coupled to FLASH (Fryxell+2000) and Arepo (Springel 2010)


SN with the full spectral code

- turbulent box with tangled magnetic field
- explode SN in the centre of the box

SN with the full spectral code

- turbulent box with tangled magnetic field
- explode SN in the centre of the box

< 一型

Conclusions

- **O** CRs thicken the disk (influence on GMC formation, SN efficiency)
- 2 CRs alone can drive and sustain outflows (mass loading ~ 1)
- **③** CRs create smooth and warm $(T \sim 10^4 \,\mathrm{K})$ outflows
- Spectrally resolved CR: more physics and better comparison to observations

This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No CRAGSMAN-646955)