Legacy ExtraGalactic

Ultraviolet Survey

Galaxy Feedback with Young Stellar Clusters & GMCs with LEGUS

Kathryn Grasha

PhD adviser: Daniela Calzetti (UMass) Postdoc adviser: Lisa Kewley (ANU)

ASTRO 3D

Australian National University

UMassAmherst

Star Formation is Hierarchical

Star formation is the key process in shaping the structure, morphology, and evolution of galaxies

Young stellar clusters

 \sim + their feedback to study star formation

Star formation is a group activity!

- → Hierarchical fashion e.g., Elmegreen+00
- → The origins and how they are determined are fundamental questions to understanding star formation

Star Formation: The Bigger Picture

Linking local (*smooth*) star forming structures to those at high-*z* (*clumpy*)

- → The role of feedback in self-regulating star formation and ISM properties in galaxies and how that changes over cosmic time
- → What are the timescales for emerging clusters?
 - Can we unravel the role that cluster feedback plays in regulating the starformation cycle?
- → What are the gas conditions of star-forming clumps?
 - Map the temporal evolution of H II and photo-dissociated regions

Legacy ExtraGalactic UV Survey

Cycle 21 HST Treasury Program

50 local galaxies (4-18 Mpc) 154 orbits WFC3/ NUV, U, B, V, I

Investigate star formation and its relation with the galactic environment from ~pc to ~kpc scales

LEGUS provides the gold standard for acquiring star cluster catalogs

Visual Cluster Identification

Visual identification provides robust catalogs

- 1 symmetrical light profiles
- 2 asymmetrical light profiles
- 3 multi-peak systems
- 4 not a cluster (stars, galaxies, bad pixels, etc)

100-1000 star clusters per galaxy (-6 $M_{\rm V}$ cutoff)

→ 3 inspectors for each source

Machine Learning to Classify Clusters Grasha18

Constrain lifetimes and sizes of the clumpiness of the star clusters: spatial Grasha+15,17a and temporal Grasha+17b(yr)

Feedback affects the dynamical evolution between star clusters and GMCs Grasha+18a.b

SED fitting to get: \rightarrow Mass \rightarrow Age \rightarrow E(B-V)

Calzetti+15, Adamo+17

1. Star-Forming Complexes: large but short lived

Star clusters are not random but clustered (*hierarchical*)

 → Will have many close neighbors (spatial and temporal)

The clustered distribution dissolves in a scale-free process as well

Star-forming clumps: large but short lived

Rapid dispersal of 10's Myr

All LEGUS galaxies show small (~50 Myr) timescales for the

dissolution of structures

Size/age of typical $z \sim 0$ starforming clumps

Strong clustered dependency on the cluster class type

→ Age sequence

The distributions are consistent across all cluster types and across all galaxies > 40 Myr

2. Correlate Clusters to Molecular Gas

- ⇒ What is the timescale for emerging star clusters?
- ⇒ How do the properties of star clusters relate with their natal molecular clouds?

Grasha+18a, Bittle+(in prep)

Katie Grasha

Star clusters disassociate with GMCs after ~6 Myr in M51

Spatial Clustering of GMCs can reflect that of the SCs

Is the stellar hierarchy reflected in the GMCs?

The youngest, most massive SCs do trace massequivalent GMCs

→ Must assume a SFE of a few percent!

Feedback will (has to?) affect the distributions of star clusters different from GMCs

12

Legacy ExtraGalactic

Characterize the correlations of gas & star clusters: essential to place more stringent constraints on our fundamental understanding of how conditions of star formation change over time

Future Work

The immediate surroundings is part of the star cluster too!

Star clusters in early galaxies are expected to be massive (super star clusters; $>10^5 M_{sun}$)

- → Huge HII regions of ionizing radiation
- → Impact/responsible for reionization of the early universe?

If we can better constrain how star clusters interact locally (resolution!), improve understanding of high-z observations of the *first galaxies* where light will be dominated by such objects

