Effect of AGN feedback seen in IFU studies

Bernd Husemann

J. Scharwächter V. Bennert J.-H. Woo

V. Mainieri

S. Sanchez

K. Jahnke

L. Wisotzki

and the entire

team

Energy released by AGN "rescue" ACDM

Most simulations require AGN feedback to stop star formation in massive galaxies >10¹⁰M_{sup}

The hunt for AGN "feedback" is open!

The two flavors of AGN feedback

Radio-mode feedback preventive feedback

QSO-mode feedback ejective feedback

Radio jets keeps the halo hot

→ prevents cooling of gas

Strong winds from the AGN

→ expels large fraction of gas

Thinkshop 15: The role of feedback in galaxy formation, 3-7 Sept. 2018

The two flavors of AGN feedback

Radio-mode feedback preventive feedback

Radio jets keeps the halo hot

→ prevents cooling of gas

QSO-mode feedback ejective feedback

Strong wind from the AGN

→ expels large fraction of gas

Evidence for ejective AGN feedback I

Thinkshop 15: The role of feedback in galaxy formation, 3-7 Sept. 2018

Evidence for ejective AGN feedback II

Optical AGN spectrum

Evidence for ejective AGN feedback II

Thinkshop 15: The role of feedback in galaxy formation, 3-7 Sept. 2018

Evidence for ejective AGN feedback II

Resolving the NLR of NGC1068 with HST

HST STIS longslit

Kinematics consistent with a hollow bi-conical outflow!

Crenshaw et al. 2000

Still many open questions...

Still many open questions...

Two approaches: 1) Constraints the properties of AGN outflow

Still many open questions...

Two approaches: 1) Constraints the properties of AGN outflow 2) Characterize the feedback on AGN hosts

Measuring (ionized) outflow energetics

$$\dot{M}(R) = a(M \cdot v)/R$$
 Mass outflow rate

$$\dot{P}(R) = \dot{M}(R) \cdot v$$
 Momentum injection

$$\dot{E}_{kin}(R) = \dot{M}(R)/2(v^2 + b\sigma^2)$$
 Energy injection

Key measurements from IFU data:

V - outflow velocity O - outflow dispersion

R - outflow radius $M oldaph n_{\scriptscriptstyle
ho}$ - outflow mass oldaph density

Large number of IFU studies on AGN

Issue 1: Inferring the outflow velocity

Complex [OIII] line profiles:

- Fitting multiple Gaussians
- Tests needed for #N of lines
- Non-parameteric measures
- Several different outflow velocities are used

- Non-parameteric line shape measure are easy and universal
 - → Non-outflowing components included in the parameters
 - → Physical interpretation of line shape is lost...

Kinematic mapping of outflows on kpc scales

Thinkshop 15: The role of feedback in galaxy formation, 3-7 Sept. 2018

Issue 2: Determining the outflow size

Importance of beam smearing

Thinkshop 15: The role of feedback in galaxy formation, 3-7 Sept. 2018

Issue 3: Measuring the electron density

Kakkad et al. 2018

No concensus on outflow power!

Thinkshop 15: The role of feedback in galaxy formation, 3-7 Sept. 2018

Are radio jets powering (partly) the outflow?

Husemann et al. 2013

High velocities often associated with jets

→ What drives the outflow on kpc scales?

Positive or negative AGN feedback?

MAGNUM survey

- star formation suppressed in outflow → negative feedback
- star formation enhanced at the edge of cavity → positive feedback

The Close AGN Reference Survey (CARS)

MUSE: The new power IFU

1'x1' FoV with 0.2" sampling → 90 000 spectra at once

Powell et al. 2018

Powell et al. 2018

Burning 100ksec with Chandra on target!

Radial X-ray surface brightness

HE0227-0931

No extended X-ray emission...

HE0351+0240

Much fainter than hot gas outflow predictions by Nims et al (2015)

Powell et al. 2018

Where is the broad [OIII] emitted?

Singha et al. in prep.

Where is the broad [OIII] emitted?

Singha et al. in prep.

Flux mapping of [OIII]→ Spectroastrometry

Precision outflow energetics

- Offsets <100pc except one case
- >90% of broad [OIII] flux is point-like
- very similar to HST studies

- Broad and narrow [SII] resolved in many cases
- n_e(broad [OIII])~2000cm⁻³
- n_a(narrow [OIII])~200cm⁻³

[CII] as a star formation rate tracer?

[CII] as a star formation rate tracer?

Full AGN luminosity impacts on disc → strongest feedback?

Mapping the multi-phase gas

Anatomy of an AGN outflow

"hot spot" with multiple line components Broad component ~1000km/s FWHM

Anatomy of an AGN outflow

Thinkshop 15: The role of feedback in galaxy formation, 3-7 Sept. 2018

Anatomy of an AGN outflow

Thinkshop 15: The role of feedback in galaxy formation, 3-7 Sept. 2018

Direct evidence for AGN feedback?

Conclusions

Ionized gas outflows are common in AGN and their size scale with luminosity

Beaware of beam smearing improved analysis needed

Outflow energetics very uncertain with impact of radio jets unclear

Many systematic multi-wavelength IFU surveys are currently ongoing

