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To model a feedback-loop (not an open-ended chain),
we need self-consistent simulations
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TIGRESS utilizes a local, shearing-box
to ensure uniformly high-resolution
(~pc) within ~kpc scale boxes

500 pc
Number Density [em ™) Temperature [K) Magnetic Field Strenghth [uG])

CGK & Ostriker (2017)
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Self-regulation of SFRs — general principles

* Stars form when nothing can stop gravity (one-way force)...
* (massive) stars inject energy and momentum to their surroundings — feedback

* changes thermal (cold/warm/hot phases) and dynamical state (turbulence) of ISM

* Massive stars are short lived

* feedback energy/momentum injection is rapid compared to system evolution

* effects of feedback — limit further gravitational collapse and destruct collapsing clouds
* ISM is highly dissipative — short cooling, dissipation time

* energy losses would reduce supporting forces on short timescale

* without efficient feedback, all ISM would collapse into dense clouds and hence stars
within a dynamical time
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Feedback shapes ISM state
ISM state controls SFR

SFR changes Feedback
in 2 way that ISM demands



Self-regulation of SFRs

* Equilibrium model for star formation rates

Ostriker, Leroy, McKee (2010); Ostriker & Shetty (201 |); CGK, Kim, Ostriker (201 1); Shetty & Ostriker (2012);
CGK, Kim, Ostriker (2013); CGK & Ostriker (2015) ...

* Stellar feedback provides pressure support — P ~ N2sfr
* pressure support should match with the ISM weight — P ~ 2<g,>/2

* On average, the ISM weight is an “attractor” for total pressure of the ISM that is
determined by the level of feedback and hence SFRs — ISM conditions (both gas “fuel”
and gravitational “environment”) can be used to predict mean SFRs

* 2srr~P/N~2<g,>/2n
* e.g.,self-gravity (2<g,;>/2=11G22/2) and turbulence (N~(p*/m*)/4) dominate in starburst
° ZSFR~21TGZZ/(p*/m*)

° (p*/m*)~( | -5)X | 03km/s for SNe; CGK & Ostriker (2015); CGK, Ostriker, & Raileanu (2017); Martizzi+
(2015); Walch & Naab (2015); Iffrig & Hennebelle (2015)...
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GalacticWinds
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Multiphase Outflows

* QOutflows are multiphase
* volume filling hot gas — constant mass and energy fluxes — winds

* clumpy warm gas — not enough energy to escape — fountains

CGK & Ostriker (2018)
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Hot VWinds

* Mean properties of hot winds in solar neighborhood (Milky Way)
* mass loading ~ 0.1

* energy loading ~ 0.01
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Hot gas mass/SN

Hot gas thermal energy/SN
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Hot VWinds

* Mean properties of hot winds in solar neighborhood (Milky Way)
* mass loading ~ 0.1

* energy loading ~ 0.01

* Be cautious about numerical mixing

* mixed single-phase outflow can either
escape or fall back entirely
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Warm Fountains
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* SNe accelerate significant warm gas to vour~50-100km/s
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* This can escape from dwarf galaxies with shallower
gravitational potential (Vout>Vesc)

* Warm fountains can be further accelerated by
* interaction with hot winds

* cosmic ray pressure gradients
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Warm Fountains

SNe accelerate significant warm gas to Vou~50-100km/s

* exponential distribution of dM/dvout

This can escape from dwarf galaxies with shallower
gravitational potential (Vout>Vesc)

Warm fountains can be further accelerated by
* interaction with hot winds

* cosmic ray pressure gradients

More high-velocity warm gas with higher SFRs
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Pitfalls — the devil is in the details

* Outflow properties are time-dependent!
* SFRs and hence SN rates are fluctuating in time
* Clustering of SNe — one massive cluster can drive significant outflows

* SNe positions are correlated with the ISM — Hgas vs Hsn

* Stochasticity — substantial evolution driven by rare events — one simulation
cannot tell us everything
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Vertically-extended SNe

* If SN distribution is vertically extended (Hsn>Has; e.g., Li et al. 2017),

mass and energy loading factors can be
* higher for hot gas (red-dotted)

* lower for warm (green-dotted)
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Fielding et al. 2018
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Clustered SNe

* One massive cluster can drive winds with higher mass and

energy loading factors

* earlier SNe open up a cavity and help subsequent SN energy to
vent out
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e Clustered SNe

L5 * How long does the cavity last?

* How does the massive cluster form?

* Is sink particle approach good enough?

* Early feedback?
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El-Badly, Ostriker, CGK in prep.
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instabilities), energy/momentum injection
per SN event can be boosted by an order

of magnitude
 e.g.,Gentry etal. 2017



Concluding Remarks

* mass/momentum/energy cycles in star-forming ISM due to gravity and feedback

* Feedback shapes ISM, and resulting SFR adjusts feedback in a way that ISM
demands

* Multiphase galactic outflows are outcome of collective effects of SN feedback
and interaction with the ISM

* In our Milky Way-like models,
* Escaping hot gas mass is about |0 times smaller than that locked into stars
* Escaping hot gas energy is about 10-100 times smaller than that injected by SNe

* SNe accelerate warm gas to high-velocity (50-100km/s), which can or cannot escape
depending on gravitational potential and presence of additional feedback; high-velocity
warm outflow rate comparable to SFR

e Spatio-temporal correlations of SNe themselves and with the ISM are crucial
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