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To model a feedback-loop (not an open-ended chain), 
we need self-consistent simulations
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TIGRESS utilizes a local, shearing-box 
to ensure uniformly high-resolution 

(~pc) within ~kpc scale boxes

CGK & Ostriker (2017)



• Stars form when nothing can stop gravity (one-way force)…
• (massive) stars inject energy and momentum to their surroundings — feedback

• changes thermal (cold/warm/hot phases) and dynamical state (turbulence) of ISM

• Massive stars are short lived
• feedback energy/momentum injection is rapid compared to system evolution

• effects of feedback — limit further gravitational collapse and destruct collapsing clouds

• ISM is highly dissipative — short cooling, dissipation time
• energy losses would reduce supporting forces on short timescale

• without efficient feedback, all ISM would collapse into dense clouds and hence stars 
within a dynamical time

Self-regulation of SFRs — general principles



CGK & Ostriker (2017)



Feedback shapes ISM state

ISM state controls SFR

SFR changes Feedback 
in a way that ISM demands



• Equilibrium model for star formation rates
• Ostriker, Leroy, McKee (2010); Ostriker & Shetty (2011); CGK, Kim, Ostriker (2011); Shetty & Ostriker (2012); 

CGK, Kim, Ostriker (2013); CGK & Ostriker (2015) …

• Stellar feedback provides pressure support — P ~ ηΣSFR

• pressure support should match with the ISM weight — P ~ Σ<gz>/2

• On average, the ISM weight is an “attractor” for total pressure of the ISM that is 
determined by the level of feedback and hence SFRs — ISM conditions (both gas “fuel” 
and gravitational “environment”) can be used to predict mean SFRs

• ΣSFR~P/η~Σ<gz>/2η
• e.g., self-gravity (Σ<gz>/2=πGΣ2/2) and turbulence (η~(p*/m*)/4) dominate in starburst

• ΣSFR~2πGΣ2/(p*/m*)

• (p*/m*)~(1-5)x103km/s for SNe; CGK & Ostriker (2015); CGK, Ostriker, & Raileanu (2017); Martizzi+ 
(2015); Walch & Naab (2015); Iffrig & Hennebelle (2015)…

Self-regulation of SFRs



P=ηΣSFR

Herrera-Camus et al. (2018)

ISM response to gravity

IS
M

 r
es

po
ns

e 
to

 fe
ed

ba
ck

Su
pp

ly

Demand⌧
Pth + ⇢v2z +

B2

8⇡
� B2

z

4⇡

�z=0

z=zmax

⇡ ⇡G⌃2

2
+ ⌃�z(2G⇢sd)

1/2

⌧
Pth + ⇢v2z +

B2

8⇡
� B2

z

4⇡

�z=0

z=zmax

⇡ ⇡G⌃2

2
+ ⌃�z(2G⇢sd)

1/2 Pth ⇠ ⌘th⌃SFR Pturb ⇠ ⌘turb⌃SFR Pmag ⇠ ⌘mag⌃SFR



Galactic Winds

SNe injection region 
strong interaction 

with ISM

Wind launching

Wind launching





• Outflows are multiphase
• volume filling hot gas — constant mass and energy fluxes — winds

• clumpy warm gas — not enough energy to escape — fountains

Multiphase Outflows

CGK & Ostriker (2018)



• Mean properties of hot winds in solar neighborhood (Milky Way)
• mass loading ~ 0.1

• energy loading ~ 0.01

Hot Winds

CGK & Ostriker (2018)



• Remaining hot gas mass/SN after the shell formation ~ 1-100Msun

• Remaining thermal energy/SN after the shell formation ~ 0.001-0.1ESN

CGK, Ostriker, & Raileanu (2017)

100 Msun

1000 Msun

10 Msun

1 Msun

1051 erg

1050 erg

1049 erg

H
ot

 g
as

 m
as

s/
SN

H
ot

 g
as

 t
he

rm
al

 e
ne

rg
y/

SN



• Mean properties of hot winds in solar neighborhood (Milky Way)
• mass loading ~ 0.1

• energy loading ~ 0.01

Hot Winds

• Be cautious about numerical mixing
• mixed single-phase outflow can either 

escape or fall back entirely



• SNe accelerate significant warm gas to vout~50-100km/s
• exponential distribution of dM/dvout

• This can escape from dwarf galaxies with shallower 
gravitational potential (vout>vesc)

• Warm fountains can be further accelerated by
• interaction with hot winds

• cosmic ray pressure gradients

Warm Fountains

CGK & Ostriker (2018)



• SNe accelerate significant warm gas to vout~50-100km/s
• exponential distribution of dM/dvout

• This can escape from dwarf galaxies with shallower 
gravitational potential (vout>vesc)

• Warm fountains can be further accelerated by
• interaction with hot winds

• cosmic ray pressure gradients

• More high-velocity warm gas with higher SFRs

Warm Fountains

CGK & Ostriker (2018)



• Outflow properties are time-dependent!
• SFRs and hence SN rates are fluctuating in time

• Clustering of SNe — one massive cluster can drive significant outflows

• SNe positions are correlated with the ISM — Hgas vs HSN

• Stochasticity — substantial evolution driven by rare events — one simulation 
cannot tell us everything

Pitfalls — the devil is in the details



• If SN distribution is vertically extended (HSN>Hgas; e.g., Li et al. 2017), 
mass and energy loading factors can be

• higher for hot gas (red-dotted)

• lower for warm (green-dotted)

Vertically-extended SNe

CGK & Ostriker (2018)



• One massive cluster can drive winds with higher mass and 
energy loading factors
• earlier SNe open up a cavity and help subsequent SN energy to 

vent out 

Clustered SNe
Fielding et al. 2018



• How long does the cavity last? 

• How does the massive cluster form?
• Is sink particle approach good enough?

• Early feedback?

Clustered SNe









•  Hot gas mass/SN ~ 100Msun

•  Thermal conduction can evaporate shell gas 
(or enclosed clouds) into the hot interior 
• e.g., Castor et al. 1975; Weaver et al. 1977; Cowie & McKee 

1977; Mac Low & McCray 1988

• The conductive mass flux is reduced compared 
to classical theory by cooling, saturation of 
thermal conduction, and discreteness of events

• Be cautious that without conduction (or 
“physical” interface driven by 3D 
instabilities), energy/momentum injection 
per SN event can be boosted by an order 
of magnitude
• e.g., Gentry et al. 2017

Thermal conduction
El-Badly, Ostriker, CGK in prep.



• mass/momentum/energy cycles in star-forming ISM due to gravity and feedback 

• Feedback shapes ISM, and resulting SFR adjusts feedback in a way that ISM 
demands

• Multiphase galactic outflows are outcome of collective effects of SN feedback 
and interaction with the ISM

• In our Milky Way-like models,
• Escaping hot gas mass is about 10 times smaller than that locked into stars

• Escaping hot gas energy is about 10-100 times smaller than that injected by SNe

• SNe accelerate warm gas to high-velocity (50-100km/s), which can or cannot escape 
depending on gravitational potential and presence of additional feedback; high-velocity 
warm outflow rate comparable to SFR

• Spatio-temporal correlations of SNe themselves and with the ISM are crucial

Concluding Remarks




