

NAOMI McCLURE-GRIFFITHS Australian National University

@naomimcgriff

Bubbles, Shells & Supershells

GLIMPSE RCW 79, ~15 pc, E~10⁵¹ ergs (Churchwell et al. 2006)

GSH 277+00+36, ~300 pc, E~10⁵³ ergs (McC-G et al. 2003)

LMC N44 (Gemini/AURA) ~70 pc, E~10⁵² ergs

Galactic Impact of Supershells

Size distribution: ~10 pc to >1 kpc (e.g. Kim et al. 1999, McG et al 2002, Boosma et al. 2008)

MW space density of shells at R_☉ ~4 kpc⁻² (Ehlerova & Palous 2005)

NGC 6946, Boomsma et al. (2008)

Supershells and Gas Cooling +70

Density contrasts >10x

McClure-Griffiths et al. (2003)

HI in wall features T~ 40 - 150 K

Dawson et al. (2011)

Molecular cloud formation - in situ or by collection?

Powering Outflows

Fountain model (e.g. Bregman et al 1984)

W4. credit: J. English/ M. Normandeau

"Popping" chimneys (e.g. Norman & Ikeuchi 1989)

GSH 277+00+36 (McClure-Griffiths et al. 2003)

Cool Gas in Galaxy Halos

NGC 4217 (Thompson, Howk & Savage 2004)

Ophiucus superbubble (Pidopryhora et al. 2007) HI (purple), Hα (green)

Halo structure tied to the disk SFR

4x # of clouds ~2x SFR

Ford et al (2008)

Some Illustrative Examples

Galactic Centre

resolution of 5-30 pc over 7 kpc

Small Magellanic Cloud SMC ASKAP + PKS Peak Intensity

resolution of 10 pc over 6.2 kpc

The Milky Way Wind: Fermi Bubbles

Fox et al (2014); Su et al (2010); Ackermann et al (2010); Bland-Hawthorn & Cohen (2003)

Evacuated inner Milky Way

modified from Lockman & McC-G (2016)

lines: Miller & Bregman (2016) clouds: McC-G et al (2013), Di Teodoro et al (2017)

Cold clouds in a Milky Way wind

Di Teodoro et al (2017)

size: 10-50 pc

mass: 10 - 10⁵ M_®

200

100

300

wind luminosity: $L_w \simeq 3 \times 10^{40}$ erg/s cold gas mass flux: 0.1 M_o yr⁻¹

 V_w = 300-400 km/s α > 140 deg

Di Teodoro et al. (2017)

Milky Way HI outflow parameters

- Total HI mass in clouds: 10⁶
 M₀
- Kinetic power of the clouds: 5 x 10³⁹ erg/s
- Mass loading rate ~0.1 M_☉/yr
- Velocities consistent with UV absorption line measurements (Fox et al 2014, Bordoloi et al 2017)

Lockman, McG, & Di Teodoro 2018, in prep

The Small Magellanic Cloud

- Distance 60 kpc
- Interacting with MW and LMC (20 kpc away)
- Mass:
 - HI: ~ 4x10⁸ M_☉ (Brüns et al 2000)
 - total: ~ 2.4x10⁹ M_☉ (Stanimirović et al 2004)
- Complex structure:
 - extended along line-of-sight, "bar" and "wing"
 - inclination ~40+/-20 deg (Stanimirović et al 2004)

Anomalous external gas

Total mass of anomalous gas: 1.3 x 10⁷ M_•

500 pc

HI + H α indicating outflow

SF rate 35 - 60 Myr ago: ~0.1 M_☉/yr

expansion velocities 35 - 65 km/s

McC-G et al (2018)

Fountain or Escape?

High velocity line-wing

Is any of this gas beyond the escape velocity?

$$v_{esc} \sim 65 - 85 \text{ km s}^{-1}$$

- Mass beyond v_{esc} :
 - $-2.5 5 \times 10^6 M_{\odot}$

Some gas should escape

HI mass loss rate:
0.2 - 1 M_☉/yr

2 - 10 x SFR

Conclusions

- Shells, bubbles and outflows have a dramatic impact on local ISM
 - gas cooling, molecular gas formation
 - reshape spiral arms, determine structure of galaxy
 - Lift gas out of the disk to ~1 2 kpc
- Some key examples of parsec scale resolution over kiloparsecs:
 - Galactic Centre:
 - Cleared out Galactic centre, anti-correlated with Fermi Bubbles (Lockman & McG 2016)
 - Outflowing cold pc-scale clouds, total mass 10⁶ M_☉ (Di Teodoro et al 2017)
 - Cold wind velocity ~330 km/s
 - SMC:
 - HI outflow of 10⁷ M_☉ (McClure-Griffiths et al 2018)
 - Helping to form the Magellanic stream (e.g. Bustard et al 2018)?