AGN Feedback in Clusters: Theoretical Perspective

Chris Reynolds (Institute of Astronomy, Cambridge)

With... Jim Drake, **Gareth Roberg-Clark**, Marc Swisdak & Karen Yang (U.Maryland)

Yang & Reynolds (2016) ApJ, 818, 181,

Roberg-Clark, Drake, Reynolds, Swisdak (2016), ApJL, 830, L9

Roberg-Clark, Drake, Reynolds, Swisdak (2018), PRL, 120, 035101

Roberg-Clark, Drake, Swisdak, Reynolds (2018), ApJ, submitted

Outline

- Part I : Brief Review of Open Issues in AGN Cluster Feedback
 - Success of "simple" hydrodynamic models
 - Digging into the physics of heating, cooling, and AGN fueling
 - Why do we care about details?
- Part II: The Microphysics of Thermal Conduction
 - Possible multiple roles of conduction
 - The ICM as a weakly-collisional, magnetized, high-beta plasma
 - Fully kinetic models... emergence of highly non-Spitzer-like transport terms (weaker temperature dependence; explicit dependence on B-field strength)

ICM: The Basics

- 80% of baryons in the intracluster medium (ICM)
 - Approx. hydrostatic equilibrium
 - ~Half of clusters have short central cooling times (<1Gyr)
 - Small fraction of gas actually cools compared with naïve expectations
- Must have heat source... current view is that only AGN heating is
 - Sufficiently efficient and long lived
 - Deposits energy in right location
 - Self-regulating (small unbalanced cooling fuels AGN)
 - Is motivated the X-ray data

Questions

- How does the AGN actually heat?
 - Strong shock heating? **NO ruled out by X-ray data**
 - Turbulence? PROBABLY NOT hard to drive (Reynolds+2015; Weinberger+2017)
 - Acoustic modes? MAYBE... need to understand dissipation (Zwiebel+2018)
 - Bubble mixing? MAYBE... need to understand CR transport (Ruszkowski+2018)
- How is the AGN fueled/regulated?
 - Hot-mode or cold-mode accretion? **STILL OPEN**
 - Hydrodynamic simulations find local cooling instabilities; cold gas then fuels AGN. precipitation [Voit+2015]; chaotic cold accretion [Gaspari & Sadowski 2017]
 - Debate about cooling criteria; t_{cool} , t_{cool} / t_{ff} , t_{cool} / t_{eddy} , $\partial (\ln K)/\partial r$, $\partial T/\partial r$
 - Cannot understand cooling instabilities without understanding heating physics!
- Why do we care?
 - Scaling to lower-masses (CGM) or high-z needs understanding of physics.
 - ... and the physics is just neat!

Thermal conduction

Potential roles of thermal conduction

- Direct heating of cool cores... reducing the need for AGN heating (e.g. Binney & Cowie 1981; Zakamska & Narayan 2003; Bogdanovic et al. 2009; Ruszkowski & Oh 2010; Yang & CSR 2016; Fang et al. 2018)
- Suppression of cooling instabilities... regulation of AGN fueling (e.g. Field 1965; Voit et al. 2008; Yang & CSR 2016)
- Dissipation of AGN-driven waves... mechanism for AGN heating (e.g. Fabian et al. 2005; Tang & Churavov 2018; Zweibel et al. 2018)

Simionescu et al. (2011)

Potential roles of thermal conduction

- Direct heating of cool cores... reducing the need for AGN heating (e.g. Binney & Cowie 1981; Zakamska & Narayan 2003; Bogdanovic et al. 2009; Ruszkowski & Oh 2010; Yang & CSR 2016; Fang et al. 2018)
- Suppression of cooling instabilities... regulation of AGN fueling (e.g. Field 1965; Voit et al. 2008; Yang & CSR 2016)
- Dissipation of AGN-driven waves... mechanism for AGN heating (e.g. Fabian et al. 2005; Tang & Churavov 2018; Zweibel et al. 2018)

Potential roles of thermal conduction

- Direct heating of cool cores... reducing the need for AGN heating (e.g. Binney & Cowie 1981; Zakamska & Narayan 2003; Bogdanovic et al. 2009; Ruszkowski & Oh 2010; Yang & CSR 2016; Fang et al. 2018)
- Suppression of cooling instabilities... regulation of AGN fueling (e.g. Field 1965; Voit et al. 2008; Yang & CSR 2016)
- Dissipation of AGN-driven waves... mechanism for AGN heating (e.g. Fabian et al. 2005; Tang & Churavov 2018; Zweibel et al. 2018)

Perseus unsharp mask (Sanders et al. 2006)

The Physics of Conduction: Classical Theory

- "Classical" result (Spitzer)
 - Assuming strong collisionality

$$\mathbf{q} = -\chi \nabla T$$

$$\chi = 4.6 \times 10^{-7} T^{5/2} \operatorname{erg cm}^{-1} \operatorname{s}^{-1} \operatorname{K}^{-1}$$

$$\left(\kappa \equiv \frac{\chi T}{P} \sim \lambda_e^2 \nu_{ce}\right)$$

• Modification for magnetic fields (Braginskii) – heat flux strongly suppressed across field lines, but proceeds like above along field lines

$$\mathbf{q} = -\chi \mathbf{b} (\mathbf{b} \cdot \nabla) T$$

Microphysics of the ICM

- Interesting scales and dimensionless numbers
 - Mean free path $\lambda_e = 2 \left(\frac{T}{8 \text{ keV}} \right)^2 \left(\frac{n}{0.01 \text{cm}^{-3}} \right)^{-1} \text{ kpc}$
 - Electron gyroradius $r_e \approx 2 \times 10^8 \left(\frac{T}{8 \text{ keV}}\right)^{1/2} \left(\frac{B}{1 \mu \text{G}}\right)^{-1} \text{ cm}$
 - Ratio of thermal-to-magnetic pressure

- So ICM is weakly collisional, strongly-magnetized, high-β plasma.
- Very susceptible to instabilities driven by deviations of velocity distribution from isotropic Maxwellian.

Physics of Conduction: New Theory

Particle in cell (PIC) simulations ("charged n-body problem") Heat flux between hot and cold plates (Roberg-Clark et al. 2018)

Example high- β case; β =64

- Heat flux drives whistlers (modified circ pol e/m waves) Levinson & Eichler (1992)
- Driven by particles resonating with whistlers $\omega = kv_x + n\Omega_e$ (n = -1, 0, +1)
- When $\delta B/B > 0.3$, overlapping resonances scatter e⁻; suppresses heat flux

Roberg-Clark et al. (2016); Roberg-Clark et al. (2018); also Komarov et al. (2018)

Heat flux independent of ∇T ... characteristic of a "saturated" heat flux

Roberg-Clark et al. (2018b)

SOLAR WIND @ 1AU

In-situ measurements e- distribution function from WIND spacecraft

Low- β ... agrees well with Spitzer

High- β ... q_{\parallel} ~1/ β . Good agreement with whistler suppression theory.

All scales much larger than electron gyroradius (500km) which also sets whistler scale.

If L_T is temperature scale length then we replace Spitzer

$$Q_{\text{Spitzer}} = \frac{0.5n_e m_e v_T^3}{L_T/\lambda_e + 4}$$

with

$$Q_{\text{icm}} = \frac{0.5n_{e}m_{e}v_{T}^{3}}{L_{T}/\lambda_{e} + 4 + \beta/3}$$

Whistler physics becomes important when

 $L_T < \frac{\beta}{3}\lambda_e \sim 30\lambda_e$ As well as suppression, neat flux has different scaling with T and depends on B. Important for stability calculations

Summary

- Galaxy clusters are an excellent laboratory for studying feedback physics, i.e., ICM heating and cooling processes and AGN fueling
- Thermal conduction in intracluster medium (ICM) may play important roll in cool core clusters and cluster-scale AGN feedback
- ICM is weakly-collisional, high-β plasma extremely rich microphysics!
- New understanding of thermal conduction beyond Spitzer theory... for temperature moderately strong ∇T find saturated heat flux at

$$Q_{\parallel} \approx 60c_{\rm s}u_{\rm mag}$$

• More work needed to understand role of collisions and full implications of large scale-separation between whistler- and astrophysical-scales

Properties of the whistlers

• Heat flux in high- β systems throttled by scattering off whistler waves

$$w \sim \frac{\Omega_e}{\beta}$$

$$v_w = \frac{w}{k} \sim \frac{v_T}{\beta}$$

$$kr_e \sim 1$$

Note: standard "cold plasma" whistlers with $\omega \sim \Omega_e \qquad kd_e = \frac{kr_e}{\sqrt{\beta}} \sim 1$

are strongly damped here.

• PIC simulations find heat fluxes in collisionless regime

$$Q_{\parallel} = \alpha n_e T_e v_w \qquad (\alpha \sim 3)$$

$$= \frac{\alpha n_e m_e v_T^3}{2\beta}$$

$$= \frac{1}{2} \alpha v_T U_{\text{mag}}$$

 Ω_e : electron gyrofrequency

 r_e : electron gyroradius

 v_T : electron thermal speed

 d_e : electron skin depth

 v_w : whistler phase speed

 $U_{\rm mag}$: magnetic energy density

$$\frac{k^2c^2}{\omega^2} - \frac{\omega_{pe}^2}{\omega n_0} \int d^3 \mathbf{v} \, \frac{\mathbf{v}_{\perp}}{2} \frac{\left[\left(1 - \frac{k \mathbf{v}_x}{\omega} \right) \frac{\partial f_0}{\partial \mathbf{v}_{\perp}} + \frac{k \mathbf{v}_{\perp}}{\omega} \frac{\partial f_0}{\partial \mathbf{v}_x} \right]}{\omega - k \mathbf{v}_x - \Omega_e} = 0, \quad (1)$$

where $\omega_{pe}=(4\pi n_0 e^2/m_e)^{1/2}$ is the plasma frequency, $\Omega_e=eB_0/m_ec$ is the cyclotron frequency, $f_0(v)$ is the initial electron phase space distribution, $v_{Te}=(2T_e/m_e)^{1/2}$ is the thermal speed, $\rho_e=v_{Te}/\Omega_e$ is the Larmor radius, $d_e=c/\omega_{pe}$ the skin depth, and $\beta_e=8\pi n_0 T_e/B^2$.

