Stellar Radiation Feedback in Galaxies

with Schaye, Teyssier, Perret

and

The Role of Feedback in Reionisation

with Blaizot, Chardin, Garel, Haehnelt, Katz, Keating, Kimm, Michel-Dansac, Ocvirk, Teyssier

Joki Rosdahl

CENTRE DE RECHERCHE ASTROPHYSIQUE DE LYON

Potsdam Thinkshop, September 4th, 2018

Radiation feedback in galaxies ...and the role of feedback in reionisation

Joki Rosdahl

CENTRE DE RECHERCHE ASTROPHYSIQUE DE LYON

Potsdam, September 3rd, 2018

Double feature:

a) Multi-scattering radiation feedback in an optically thick ULIRG-like galaxy

with Schaye, Teyssier, Perret

b) On the importance of (SN) feedback for reionisation

with Blaizot, Chardin, Garel, Haehnelt, Katz, Keating, Kimm, Michel-Dansac, Ocvirk, Teyssier

Radiation feedback in galaxies

Stellar radiation feedback is a vital component in many models (FIRE, NIHAO, Vela)

- Suppresses SFR and generates outflows
- BUT done with sub-grid recipes and many assumptions

'Galaxies that shine: RHD simulations of disk galaxies'

Rosdahl, Schaye, Teyssier, & Agertz (2015)

We ran the first radiation-hydrodynamical simulations of galaxies that directly model photoionisation, radiation pressure and multi-scattering, using radiation-hydrodynamics (RHD)

'Galaxies that shine: RHD simulations of disk galaxies'

Rosdahl, Schaye, Teyssier, & Agertz (2015)

Results in short:

- significant effect from photoionisation in low-mass galaxies
- but little effect at ~MW mass
- radiation pressure did nothing

But: low optical depths \Rightarrow little boost from multi-scattering IR radiation $\dot{p}_{\mathrm{IR}} = \frac{L}{c} \tau_{\mathrm{IR}}$

→What do we get in a `best-case' scenario of an optically thick ULIRG galaxy, with high optical depths?

$$M_{\rm baryons} = 3.5 \times 10^8 \ M_{\odot} (\approx 0.01 \ M_{\rm MW})$$

No feedback

Rad. feedback

DRAMA simulations (in prep.)

Disks with RAdiation-MAtter interactions

Simulation setup

- Isolated compact ULIRG-like disk galaxy
- $M_{halo} = 6 \times 10^{11} M_{\odot}$ $M_{baryons} = 3 \times 10^{10} M_{\odot}, 60\%$ gas
- Max $\Delta x=5$ pc resolution (1 kpc outside the ISM)
- Mass resolution of $m_{DM}=10^5 M_{\odot}$ $m_{DM}=2\times10^3 M_{\odot}$
- Metal mass fraction of Z=0.01 (50% Solar metallicity)
- Individual 1051 erg SNe with momentum kicks (e.g. Kimm et al. 2015)
- Bursty star formation depends on local virial parameter and mach number (Federrath+Klessen 2012; similar to FIRE models)
 - Typical local star formation efficiency $\epsilon_{\rm ff} \sim 0.5$

$$\dot{\rho}_* = \epsilon_{\rm ff} \rho / t_{\rm ff}$$

- Main differences from 'galaxies that shine':
 - More compact, gas rich
 - Burstier star formation in higher-density gas (optically thicker regions)

DRAMA Simulation setup

5 radiation groups extracted from Bruzual & Charlot (2003) stellar

Photon	$\epsilon_0 \text{ [eV]}$	$\epsilon_1 [\mathrm{eV}]$	$\sigma_{ m H{\scriptscriptstyle I}}[{ m cm}^2]$	$\sigma_{ m HeI}[{ m cm}^2]$	$\sigma_{ m He{\scriptscriptstyle II}}[{ m cm}^2]$	$\tilde{\kappa} [\mathrm{cm}^2 \mathrm{g}^{-1}]$
group			±5%	±5%	$\pm 5\%$	
IR	0.10	1.00	0	0	0	10
Opt	1.00	13.60	0	0	0	10^{3}
$\mathrm{UV}_{\mathrm{H{\scriptscriptstyle I}}}$	13.60	24.59	3.3×10^{-18}	0	0	10^{3}
$\mathrm{UV}_{\mathrm{HeI}}$	24.59	54.42	6.3×10^{-19}	4.8×10^{-18}	0	10^{3}
$\mathrm{UV}_{\mathrm{HeII}}$	54.42	∞	9.9×10^{-20}	1.4×10^{-18}	1.3×10^{-18}	10^{3}

Group energy intervals

Photo-ionisation cross sections

Dust opacities, with
$$\kappa = \tilde{\kappa} \; \frac{Z}{Z_{\odot}}$$

Dust-absorbed radiation is reprocessed into IR, which multi-scatters → radiation pressure boost

Radiation hydrodynamics with RAMSES-RT

Rosdahl et al (2013), Rosdahl & Teyssier (2015)

$$\frac{1}{c} \frac{\partial I_{\nu}}{\partial t} + n \cdot \nabla I_{\nu} = -\kappa_{\nu} I_{\nu} + \eta_{\nu}$$

$$\frac{\partial I_{\nu}}{\partial t}_{B_{eam}} + n \cdot \nabla I_{\nu} = -\kappa_{\nu} I_{\nu} + \eta_{\nu}$$

$$A_{bsorption}$$

$$I_{bsorption}$$

- Moment method for radiation
- unlimited number of sources
- Hydro-coupled
 Photons emitted and propagated on-the-fly, ionising, heating, pushing, and multi-scattering on the gas
- Reduced speed-of-light to run in in feasible time
- Publicly available on bitbucket

SNe+ionising radiation but no dust absorption

With dust absorption and scattering added

DRAMA: local optical depths

Stars form at high optical depths;

$$\tau_{\rm IR} \approx 10$$
 - 100

- Gas environment `diffuses' with stellar age
- Faster diffusion with IR radiation
- But stars form at higher densities with IR
 - Likely due to local IR pressure support, which delays star formation

DRAMA Star formation

 IR radiation suppresses the initial starburst

Star formation DRAMA: Disks with RAdiation-MAtter interactions

DRAMA Outflows

 Some increase in outflows due to IR radiation

DRAMA KS relation

DRAMA: local densities and optical depths

- Stars form at high optical depths; $\tau_{\rm IR} \approx 10$ 100
- Gas environment `diffuses' with stellar age
- Faster diffusion with IR radiation
- But stars form at higher densities with IR
 - Likely due to IR pressure support, locally delaying star formation

Phase diagrams at 250 Myr

 Trapped, multi-scattering IR radiation pressurises the dense gas clumps

$$P_{\rm rad} = \frac{E_{\rm IR}^{\rm trapped}}{3}$$

Phase diagrams at 250 Myr

• Trapped, multi-scattering IR radiation pressurises the dense gas clumps

$$P_{\rm rad} = \frac{E_{\rm IR}^{\rm trapped}}{3}$$

Phase diagrams at 250 Myr

 Trapped, multi-scattering IR radiation pressurises the dense gas clumps

$$P_{\rm rad} = \frac{E_{\rm IR}^{\rm trapped}}{3}$$

Phase diagrams at 250 Myr

- Trapped, multi-scattering IR radiation pressurises the dense gas clumps
- $P_{\rm rad} = \frac{E_{\rm IR}}{3}$

DRAMA simulations summary

- Multi-scattering IR radiation pressurises dense optically thick clumps, somewhat reducing star formation
- Mildly stronger outflows, compared to SN and photoionisation only

DRAMA simulations summary

- Multi-scattering IR radiation pressurises dense optically thick clumps, somewhat reducing star formation
- Mildly stronger outflows, compared to SN and photoionisation only
- Bad news: the effect of IR weakens with increasing resolution
 - More IR escape channels with higher resolution?

Tiny volume simulations

In Trebitsch et al. (2017) we studied f_{esc} from more massive halos.

Physical resolution of 7 pc in three targeted halos and their environments

Main result:

fesc is far from constant and heavily regulated by supernova (SN) feedback

1 kpc 171.9 kyr

The role of (SN) feedback for reionisation

The SPHINX simulations project: simulating reionisation and galaxy formation over the first billion years see arxiv:1801.07259

The SPHINX simulations in context

Showing RHD simulations with full cosmological (non-zoom) volumes

With SPHINX, we can simultaneously

- predict fesc of ionising radiation from thousands of galaxies in one volume
- **→**predict the reionisation history

SED models

Spectral Energy Distributions for stellar populations

Binary Stars Can Provide the "Missing Photons" Needed for Reionization

Xiangcheng Ma,¹* Philip F. Hopkins,¹ Daniel Kasen,^{2,3} Eliot Quataert,² Claude-André Faucher-Giguère,⁴ Dušan Kereš⁵ Norman Murray⁶† and Allison Strom⁷

- Post-processing pure-hydro zoom simulations, Ma et al. predict 4-10 times boosted $f_{\rm esc}$ (escape of ionising radiation) with a binary population SED
- The reason: longer and stronger radiation due to mass transfer and mergers in binary systems

SED models

Spectral Energy Distributions for stellar populations

Before:

- BPASS = Binary Population and **Spectral Syntesis from Eldridge** et al.
- →SPHINX: using full RHD cosmological simulations, what does BPASS do for the reionsiation history?

Setup of the Sphinx simulations X

Sphinx simulations

5 cMpc box with high mass resolution

10 cMpc box with lower mass resolution (but same physical resolution)

...plus many tiny 1.25-2.5 cMpc boxes for exploration and calibration

SPHINX setup

- Physical resolution max 10 pc, required to capture the escape of ionising radiation from galaxies (Kimm et al, 2017).
- DM mass resolution of 3×105 M_☉
- Stellar particle resolution of $10^3~M_{\odot}$
- Bursty turbulence-dependent star formation
- SN explosions modelled with momentum kicks (Kimm et al., 2015)
 - We calibrate SN rates to reproduce a realistic SF history (four times boosted SN rate derived from Kroupa initial mass function)
- No calibration on unresolved $f_{\rm esc}$ (i.e. we simply inject the [BPASS] SED luminosity)

Sphinx simulations

Sphinx simulations

Selection of initial conditions

- To minimise cosmic variance effects, we ran pure dark matter simulations from 60 (CMB) initial conditions and selected the 'best' halo mass function
- We're interested in the correct luminosity budget:

Lum $\propto SFR \propto M_{\rm halo}^{1.5}$

Selection of initial conditions

- To minimise cosmic variance effects, we ran pure dark matter simulations from 60 (CMB) initial conditions and selected the 'best' halo mass function
- We're interested in the correct luminosity budget:

Lum \propto SFR $\propto M_{\rm halo}^{1.5}$

Selection of initial conditions

 'Best' ICs give a better comparison to observations, given properly calibrated feedback

1 kpc

Stellar mass to halo mass

Luminosity function

The agreement with observations is thanks to

- Strong supernova feedback
- Careful selection of initial conditions to minimise cosmic variance

Stellar mass to halo mass

Stellar mass to halo mass

Reionisation history binary vs single SEDs

Much more efficient reionisation with binary populations, independent of volume size and mass resolution

The interplay of feedback and fesc

I have not yet analysed the evolution of the escape fraction, but it looks a lot like our zoom simulations from Trebitsch et al (2017)

The interplay of feedback and fesc

Escape fractions for most massive halo progenitor in smaller box

 $M_{halo}(z=6) \sim 10^{10} M_{\odot}$ $M_{star}(z=6) \sim 10^{8} M_{\odot}$

The interplay of feedback and fesc

fesc for the full volume Redshift

Escape fractions are systematically higher with binary stars! Luminosities are somewhat higher too.

fesc vs halo mass (with binaries)

fesc vs stellar population age (with binaries)

- Stacked data for z=9-6
- 90% of escaping luminosity for 3-20 Myr

The need for SN calibration

The need for SN calibration

Reionisation history

Reionisation history

SN feedback efficiency does not affect reionisation much!

Surprising, given the much higher luminosities with weak feedback

fesc and feedback

fraction of ionising photons escaping from parent halo

With strong feedback, lower luminosities are balanced by higher escape fractions

SN feedback helps the radiation get out

Radiation feedback

Radiation has a small effect in suppressing star formation

This is all from photoionisation

I ran a small-volume with IR radiation → negligible effect

Radiation feedback

Reionisation feedback

From upcoming paper by Harley Katz et al.:

Gas density profiles of IGM filaments with distance from central galaxies

Reionisation suppresses (dwarf) galaxy growth by shutting down accretion

Summary

- DRAMA isolated galaxy simulations
 - IR radiation (still) not doing very much on the galactic scale
- SPHINX reionisation simulations
 - (SN) feedback suppresses intrinsic ionising luminosities of galaxies
 - But it also boosts the escape of the ionising radiation
 - **⇒**Reionisation history is insensitive to SN feedback strength
 - But what about other feedback physics?
 - What do e.g. Cosmic Rays do to fesc?

Resolution convergence

