Photoionization, stellar feedback and ISM modeling in Arepo

Laura V. Sales

UC Riverside

In collab. with Federico Marinacci, Mark Vogelsberger, Paul Torrey, Volker Springel

Agertz et al. 2013

Absorption of photons from young stars photoionizes the gas but also impartes momentum. How important can this process be?

Murray et al., Hopkins et al., Wise et al., Kimm et al., Ceverino et al.,

Cloud 1

 $M \sim 2x10^{6} M_{sun}$ R = 3 kpc $T_{0} \sim 500 \text{ K}$ $L = 10^{6} L_{sun}$

Idealized radiative transfer experiments with Arepo

Sales et al. 2014

Photoionization, stellar feedback and ISM modeling

Sales et al. 2014

2018 Thinkshop

RP has the capability, but is slower than photoionization

Radiation. Pressure

Photoionization

Sales et al. 2014

(see also Walch et al. 2012, Rosdahl et al. 2015, Raskutti et al. 2017, Haid et al. 2018)

New ISM treatment in Arepo

Marinacci, Sales, Vogelsberger, Torrey, et al., in prep.

Gravity

Gravitational forces are calculated using a Tree-PM scheme. Long range forces = particle-mesh / short scale = oct-tree

Heating/Cooling

<u>Cooling</u>: gas allowed to cool down to low temperature ~10K via low-temperature metal line, fine-structure and molecular cooling processes, fit to CLOUDY tables.

<u>Heating</u>: Cosmic ray and photoelectric heating.

(modelling follows Hopkins et al. 2018)

Stellar Feedback

<u>Supernova</u>

 $p_{\rm SN} = M_{\rm SN} v_{\rm SN} = \sqrt{2E_{\rm SN}} M_{\rm SN}$

 $E_{\rm SN,tot} = f_{\rm SN} E_{51} (N_{\rm SNII} + N_{\rm SNIa})$

Boost for unresolved Sedov-Taylor phase:

 $r_{\rm cool} = 28 {
m pc} \ E_{51}^{0.29} \langle n \rangle^{-0.43} \left(Z/Z_{\odot} + 0.01 \right)^{-0.18}$

Photoionization + Radiation pressure

Stochastic heating + momentum within kernel

$$r_{\rm strom,s} = \left(\frac{3N_{\star}}{4\pi\alpha_{\rm rec}\langle n_{\rm H}^2\rangle}\right)^{1/3}$$

$$\Delta p = \frac{L_{\star}}{c} (1 + \tau_{\rm IR}) \Delta t$$

Laura V. Sales

Resolving the multi-phase nature of gas in Arepo

Marinacci, Sales, Vogelsberger, Torrey, et al., in prep.

2018 Thinkshop

Photoionization, stellar feedback and ISM modeling

Laura V. Sales

Marinacci, Sales, Vogelsberger, Torrey, et al., in prep.

Self-regulation of star formation

MW disk

Dwarf galaxy

Marinacci, Sales, Vogelsberger, Torrey, et al., in prep.

Π

Momentum budget in MW-like disk

Marinacci, Sales, Vogelsberger, Torrey, et al., in prep.

Properties of gas clouds

Feedback fragments the ISM with more and smaller clouds than no-feedback runs

Hicks, Sales, Marinacci, Vogelsberger, et al., in-prep

Properties of gas clouds

Feedback allows for lower mass, smaller radius and $\sigma_v \sim 5-10$ km/s

Good agreement with Grisdale et al. 2018 using RAMSES

Hicks, Sales, Marinacci, Vogelsberger, et al., in-prep

Properties of gas clouds

Summary

- * Photoionization quickly propagates into the cold ISM and might weaken the effect of radiation pressure compared to idealized models
- Radiative feedback from young stars is important to achieve <u>self-regulation</u> in star formation, but is <u>subdominant</u> in terms of momentum input and outflows in MW and dwarf models.
- ISM models including <u>SN and radiative feedback</u> establish a <u>multi-phase gas</u> distribution. Gas clouds are less massive, smaller radius and with lower efficiency to form stars. Properties agree to first order with observed MW clouds.
- ***** Results should be compared with full radiative transfer runs