Cosmic-ray Feedback in Galaxies and Clusters

Hsiang-Yi Karen Yang
University of Maryland, USA

Cosmic rays (CRs) in galaxies vs. clusters

Nonthermal emission: hadronic (CRp); inverse-Compton, bremsstrahlung, synchrotron (CRe)

Acceleration by supernova explosions

$$X_{CR} = P_{cr}/P_{th} \sim 1$$

Winds in the MW (Everett+08)

Coma cluster (X-ray & radio)

Cosmic rays (CRs) in galaxies vs. clusters

Nonthermal emission: hadronic (CRp); inverse-Compton, bremsstrahlung, synchrotron (CRe)

Acceleration by supernova explosions $P_{CR}/P_{CR,MW} > 100!$ (VERITAS 2009)

How do CRs drive winds, affect SFRs, & the CGM?

Acceleration by structure formation shocks $X_{CR} < 10\%$

Coma cluster (X-ray & radio)

Cosmic rays (CRs) in galaxies vs. clusters

Nonthermal emission: hadronic (CRp); inverse-Compton, bremsstrahlung, synchrotron (CRe)

Acceleration by supernova explosions

 $P_{CR}/P_{CR,MW} > \sim 100! (VERITAS 2009)$

How do CRs drive winds, affect SFRs, & the CGM?

AGN injection

 $X_{CR} < 10\%$, $X_{CR,jet} = ?$

Coma cluster (X-ray & radio)

How do CRs affect AGN feedback in the cores?

Properties of CRs in the Galaxy

- ightharpoonup Mostly protons ($n_i/n_e \sim 50-100$)
- \bullet $U_{CR} \sim 1 \text{eV cm}^{-3} \sim \overline{U_B} \sim \overline{U_{rad}} \sim \overline{U_{th}}$
- ❖ Require ~10% of mechanical E_{SN}
- **♦** <E> ~ 3GeV
- Composition => confinement time ~ 20 Myr
- ❖ Very isotropic => well-scattered (λ_{mfp} ~ 1pc)

Self-confinement picture of CR transport

❖ Gyro-resonance scattering:
$$k_{||} \sim \frac{1}{\mu r_L}$$

$$F = v \times B$$

Streaming instability (Kulsrud & Pearce, 1969):

Anisotropy => wave growth => enhanced scattering

$$\Gamma_{\mathrm{CR}}(k_{\parallel}) \sim \Omega_0 \frac{n_{\mathrm{CR}}(>\gamma)}{n_{\mathrm{i}}} \left(\frac{v_{\mathrm{D}}}{v_{\mathrm{A}}} - 1\right)$$

❖ Marginal stability: v_D ~ v_A

When waves are damped

streaming inhibited (by perturbations)

fast streaming (perturbations smoothed out)

Classical CR hydrodynamics

(see reviews by Zweibel 2013, 2017)

CRs stream down pressure gradient with $m{v}_\mathtt{A}$: $m{v}_s = -\mathrm{sgn}(\hat{m{b}}\cdot
abla e_\mathrm{CR})m{v}_\mathrm{A}$

$$oldsymbol{v}_s = - ext{sgn}(\hat{oldsymbol{b}}\cdot
abla e_{ ext{CR}})oldsymbol{v}_A$$

$$\frac{\partial(\varrho u)}{\partial t} = [...] - \nabla P_{CR}$$

Momemtum transfer via pressure gradient

$$\frac{\partial e_{CR}}{\partial t} = [\dots] - \nabla \cdot \mathbf{F} + \nabla \cdot (\mathbf{\kappa} \cdot \nabla e_{CR}) - H_{CR}$$

Streaming and diffusion

Heating via waves

$$oldsymbol{F} = (e_{\mathrm{CR}} + P_{\mathrm{cr}}) oldsymbol{v}_{\mathrm{A}}, \; \kappa_{\parallel} \sim v^2 /
u$$
 $oldsymbol{H}_{\mathit{CR}} = - v_{A} \cdot
abla P_{\mathit{CR}}$

$$H_{CR} = -v_A \cdot \nabla P_{CR}$$

Alternative – *extrinsic turbulence* model

Generalized CR hydrodynamics (Zweibel 2017):

$$oldsymbol{v}_{
m D} = \left(rac{
u_+ -
u_-}{
u_+ +
u_-}
ight) oldsymbol{v}_{
m A} \equiv f oldsymbol{v}_{
m A}, ext{where } f < 1$$

$$H_{\rm CR} = -f \boldsymbol{v}_{\rm A} \cdot \nabla P_{\rm CR}$$

- ❖ For balanced turbulence, f=0
 - -- CRs advect with gas, no wave heating
 - -- **Diffusion** from B wandering or unresolved B

Simple but highly uncertain!!

Applications to CR-driven winds

❖1D models & semi-analytical models:

Ipavich 75, Breitschwerdt 91, 93, Zirakashvili+96, Everett+08, 10, Dorfi+12, Recchia+17, Samui+18, Mao+18

❖3D hydro, isolated galaxies:

Uhlig+12, Booth+13, Salem+14, Simpson+16, Wiener+17, Jacob+18

❖3D MHD, galaxy patches or isolated galaxies:

Hanasz+13, Pakmor+16, Girichidis+16, Ruszkowski+17, Butsky+18, Farber+18, Holguin+18

❖3D cosmological hydro:

Jubelgas+08, Wadepuhl+11, Salem+14, 16, Liang+16,

1. CRs can drive winds

Hanasz+13

Uhlig+12

CR Pressure

Booth+13

CRs drive winds by pressure gradients

Salem+14

No transport, no wind

(see also Salem+14, Girichidis+16, Simpson+16, Heintz+18)

Advection only, no transport

Advection & transport

Ruszkowski, KY & Zweibel (2017)

Mass loading depends on transport speed!

2. CRs can suppress star formation

(Jubelgas+08, Wadepuhl+11, Uhlig+12, Booth+13, Salem+14, Ruszkowski+17, Jacob+18)

- SFRs suppressed due to CR pressure support against gravitational collapse
- More suppression for lower-mass halos

M/L ratio

Faint-end LF

3. CRs can affect wind properties

(Uhlig+12, Booth+13, Simpson+16, Samui+18, Butsky+18, Farber+18, Girichidis+18)

CR winds are cooler (~1e4K), multi-phase, accelerated more gently

Girichidis+16

4. CRs can affect CGM properties

(see Liang+16, Butsky+18)

CGM is cooler (<1e6K), metal-enriched (~0.1Z_{sun}), matches better with COS UV absorption lines

Salem+16

Tests against the data

- Wind profiles (velocity, ionization, mass loss rate)
- ❖ v_{wind} vs. v_{circ.} Mass loading vs. M_{halo}
- ❖ Galaxy scaling relations (Lγ vs. L_{FIR}, L_r vs. L_{FIR}, L_x-SFR, etc)
- CGM properties (profiles of columns & covering fractions)

Booth+13

Mass loading vs. M_{halo}

Jacob+18, but see Mao+18

But the devil lies in the details...

- CR energy losses in dense environments (Jubelgas+08, Jacob+18)
- Interaction between CRs & cold clouds (Everett+11, Wiener+18)
- **Details about CR transport:**
 - -- Isotropic vs. anisotropic diffusion (Pakmor+16, Jacob+18)
 - -- Diffusion vs. streaming (Wiener+17, Butsky+18)
 - -- Decoupling in cold, neutral medium (Farber+18).
 - -- Spatial dependence of transport speed (Holguin+18)
 - -- Energy dependent diffusion/streaming (?)

Simulating Fermi Bubbles with CR spectral evolution

(KY & Ruszkowski 2017)

But the devil lies in the details...

- CR energy losses in dense environments (Jubelgas+08, Jacob+18)
- Interaction between CRs & cold clouds (Everett+11, Wiener+18)
- Details about CR transport:
 - -- Isotropic vs. anisotropic diffusion (Pakmor+16, Jacob+18)
 - -- Diffusion vs. streaming (Wiener+17, Butsky+18)
 - -- Decoupling in cold, neutral medium (Farber+18).
 - -- Spatial dependence of transport speed (Holguin+18)
 - -- Energy dependent diffusion/streaming (?)
- Computational advancements (Dubois+16, Pakmor+16, Jiang+18, Thomas+18)

Talks: C. Pfrommer, M. Ruszkowski, P. Girichidis & R. Pakmor **Posters:** J. Wiener, T. Chan

CR feedback in galaxies -- summary

- CRs can suppress SFRs of low-mass galaxies, affecting faint-end LF & M/L ratios.
- CR-driven winds are cooler, multi-phase, and gently accelerated.
- The CGM including CR effects is cool and metal-rich, which matches the COS data.
- All the above depends on details of *CR transport* processes and interactions with gas.

PART II – CR feedback in clusters

AGN feedback in Perseus cluster

- X-ray: intracluster medium (ICM)
- Composition of radio bubbles: thermal gas or *CR protons*
- Cool-core (CC) clusters: t_{cool} << t_H
- Solution to the cooling-flow problem

Success of hydro simulations of AGN feedback

How about CR-dominated jets?

Synthetic Ha map

Self-regulation

Sijacki+07, Cattaneo+07, Booth+09, Dubois+10

Cold gas accretion + momentum-driven jets

Gaspari+11,12,15, Li+14,15,17, Prasad+15, KY+16ab, Meece+17

Local thermal instabilities

Pizzolato+05,10, McCourt+12, Sharma+12, Meece+15, Voit+15,17

Works on CR feedback in clusters

❖1D models:

Loewenstein+91, Guo+08, Pfrommer 13, Jacob+2016ab

2D hydro, local simulations:

Mathews+08, Guo+10

❖3D hydro/MHD, local simulations:

Weinberger+17, Bourne+17, Ehlert+18, KY+18

❖3D hydro/MHD, global simulations:

Sijacki+08, Ruszkowski+17

1. CR-jet inflated bubbles are "fatter"

- Slower CR jets allow CR pressure to expand laterally -> Larger cross section causes deceleration
- CR bubbles could more easily produced young cavities at the center of Perseus

2. CR bubbles can expand the hot ICM

(see also Mathews+08)

Enclosed mass profiles

KY+18 (in prep.)

CRs can efficiently uplift the hot ICM because

- -- CR bubbles have larger cross sections
- -- ICM containing CRs is more buoyant

3. CR bubbles heat the ICM via Coulomb, hadronic & Alfven-wave heating

(see also Loewenstein+91, Pfrommer 13, Jacob+2016ab, Ruszkowski+17, Ehlert+18, KY+18)

No transport, no heating

Advection only, no transport

Ruszkowski, KY & Reynolds (2017)

- With transport, CRs can escape the bubbles and interact with ICM
- CR heating (Alfven-wave, Coulomb, hadronic) -> self-regulation

No transport, no heating

Ruszkowski, KY & Reynolds (2017)

4. CR jet feedback affects evolution of cold gas

Mass of cold gas (T<5e5K) vs. time

KY+18 (in prep.)

- Cold gas formed initially due to adiabatic cooling and slow heating
- With transport, amount of cold gas reduced due to CR heating

CR feedback in clusters -- summary

CR feedback in clusters -- summary

Kinetic jets

CR jets, no transport

CR jets, with transport

Successful

Failed to regulate

Successful

Less intermittent

More intermittent

Instantaneous bubble mixing (KY+16)

Gradual CR heating

Open questions

Details of CR transport

- -- isotropic vs. anisotropic
- -- streaming (self-confinement) vs. diffusion (extrinsic turbulence)
- -- damping mechanisms (Wiener+13, 18)
- -- energy dependence

❖ Nonthermal emission

- -- gamma-ray constraints from Fermi/MAGIC
- -- connection to radio mini halos (Jacob+16ab)

How to distinguish CR bubbles from thermal bubbles obervationally?

- -- Sunyaev-Zel'dovich effect (Pfrommer+04, Sijacki+08, Abdulla+18)
- -- Inverse-Compton scattering
- -- 55

CR Feedback in Galaxies and Clusters -- summary

- CRs are a key ingredient in galaxy and cluster feedback
- CR transport model matters
- CR physics is rich and extremely multi-scale