Speaker
Description
The plane-of-satellites problem is one of the most severe small-scale challenges for the standard Λ cold dark matter (ΛCDM) cosmological model: Several dwarf galaxies around the Milky Way and Andromeda co-orbit in thin, planar structures. A similar case has been identified around the nearby elliptical galaxy Centaurus A (Cen A). We studied the satellite system of Cen A with line-of-sight velocities from VLT/MUSE observations and TRGB distances from VLT/FORS2 and HST observations. Out of 28 dwarf galaxies with measured velocities 21 share a coherent motion and are arranged in a flattened structure. Similarly, flattened and coherently moving structures are found only in 0.2% of Cen A analogs in the Illustris-TNG100 cosmological simulation, independently of whether we use its dark-matter-only or hydrodynamical run. These analogs are not co-orbiting, and they arise only by chance projection, thus they are short-lived structures in such simulations. Our findings indicate that the observed co-rotating planes of satellites are a persistent challenge for ΛCDM, which is largely independent from baryon physics.
Do you plan to attend the symposium in-person or virtually? | in-person |
---|