Speaker
Description
I will present a new post-processing pipeline for (magneto-)hydrodynamic simulations of protoplanetary accretion disks and results from its first application. By combining publicly available radiative transfer and astrochemistry tools, we process snapshots from radiative, non-ideal MHD simulations of thermally-assisted centrifugal outflows from disks (Gressel et al. 2020) to search for observational signposts of outflows which are accessible from current observatories. In particular, we compare synthetic observations from models with and without outflows to determine which transitions and chemical species can be used to distinguish between the two classes of models. We find that the shape of the line profiles, and velocity asymmetries in moment 1 maps, can discriminate between disks with and without outflows. By combining the synthetic observations with the full simulation data, we can also pinpoint where emission from a particular line or species is coming from in the outflow and/or disk, which can help us better understand existing and future observations of disks and outflows.