Speaker
Description
I will present a novel method to extract azimuthally averaged 3D velocity profiles from ALMA data. Application of this to the well studied source HD 163296 reveals a highly dynamical disk, hosting large flow structures indicative of meridional flows likely driven by three embedded protoplanets. These flows provide an efficient transport mechanism of volatile-rich gas in the disk atmosphere towards the planet-forming midplane. In addition, we find tentative evidence of a slow disk wind in the outer 100 au of the disk, like connected to the previously detected large scale wind described in Klaassen et al. (2013). I will further demonstrate how application of this method to multiple molecular species will allow us to map the dynamical structure of a protoplanetary disks in the (r, z) plane, allowing us to directly search for characteristic flow structures which will help us to distinguish between potentially active instabilities. I will end with an outlook to how extensions of these methods can be used to search for embedded planets by searching for localized deviations from the background rotation.